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1. FOOD SERVICE MANAGEMENT (U105)

1.1 1the Problems of Food Service Management

The food service management for an institution
suc as a hospital must concern itself with the problems
of serving a large number of meals every day. Such a'
service demands, at the very least: '1) that sufficient

quantities'of food Items be on hand to prepare the menu
items, 2) that certain nutrient requirements be met, and ,

3) that reasonable costs lie maintined. There are, of
course, other aspects 4f food service, but for the

A
purposes of this. unit we will concentrate on these three.

1.2- Definitions

We define food items as purchase raw food, and .a

menu item as a'single serving of a di h made froM food
#irenis. or ample, cake is a menu item whose ingudi
ants eonsis of food items such'as eggs, flour, butter
and sugar. Nutrients are the properties or food such as .
calories, 'protein, fat, carbohydrates, alc,ium, vitamin
A.

0,

'1.3 Calculating Menu Costs

Let us suppose thZt we wished it calculate,the cost,
of a mou item, for. example, a pound cake. The recipe
calls Sot I unit, given as a weight, each of eggs, flour,.

. sugar, and butter. The -cost of these units are, respec-
tively, 70, 10, 25, and 50 cents. It i5 easy to see that
the cost of the ingredients in a potind cake i's:

4
70(1) .._+ 1041) + 25(1) + W(1) = 155 cents = $1.55.

-:-\.
. Another recipe, one f r crambled eggs,'requires
1

T1T unit of eggs and unit of butter. This cost,isli cal-
culaved as:

1 1 1-70(-2-) + 50.(T) ... 477 cents.

, c.
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The cost of each of-theseoenu items is obtained by

taking the sum of several products. The products, in

each case, are the costs of a unit of food item multiplied r

by the number of units of that ite hick is needed in

the recipe. This is very simple ar thmetic. However,

since we are defiling with a largenumber of recipe:4h with

a wide range of ingredients, there is some efficiency in

organizing our calculation in a structuredway. We will

proceed to demonstrate how its may be done.

1.4 A Matrix kepresenta4on of Menu Items

The ingredients of each menu item can be arranged

avecolumns,of a matrix in the following fashion:

0

0
0

eggs

flour

spdr
1

buttei'

beef
stroganoff

*

pound
cak

I

1

1

f'1.25
0

scrambled

eggs

.5

0

0 ''

0

Menu Item

beef strog.* ,

0

0
:

sO

0

omelet

1

.25

?

.25

*0

.

*Beef strogarroff is a convenience food, and is
purchased akeady prepared. For that teason it
liked as both a food item and-'a menu item. '

-The oot4ns,of this ingredient matrix contain the

quantity of each food item needed2for the menu item that
. .

is represented by each ,column.. The rows, pf the matrix

represent the food items as they appear in various recipes.

A zero entry indicates that the food item is not used in
particular recipe. The list of food items and menu. I

. . items is limited here for simplicity-. A practical list;
would contain hundreds of items.

41.
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1,.5 The Price Vector

I A. matrix consisting of a single row or column ia

called a etor. We can arrange the prices of each of

the food i ems in the above matrix as such an ordered\t1

row of numbers tO define a price'vector:

beef
. eggs .flour sugar butter strog.

Price =,(70 - 10 25 50 100 .]

1.6 Calculating the Cost Vector

Irf wemultiply the p e vector by the ingredient

matrix, the result is a vecto whose entries are the

costs for each recipe. That is, for the example values

given:

(70 10 25 50

Notite the, order in which we write the left side of this

equation: row vector first, ingredient matrix, second.

Compare the computation made previously for the first

two of the menu items in this matrix with the computation

which is made in matrix multiplication. We can see that

100] 1
1

1

1

0

.5

0

0

.25

0 ,

1

.Z5

0,
.25

0

0

0

0

0

1 = (155 47.5 85 100].

, thescomputations are the same, and that the resulting

vector does indeed contain, in order, the cost of each

tmenu item. .

Some of the advantages Of structuring the problem

this ,way-should be evident. For one, matrix multiplica--

tidn accomplished the needed computation. In this form,

\ the data an be easily entered an the operations per-

formed on a computer. Second, a simple change in p ice

can be entered once and will' always be'applied to al

recipes. Finally, new recipes and ingredients can be

added to akexpanded matrix with little trouble.

7ti
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' , Note: Sometimes it is convenient to ifse matrix

multiplication just to sum a series of columns (or rows)
of a matrix. For example, suppose we wished to add each
column of this matrix:

2.5 10.0 9.4 7.4

, 7.3

[

7.6 3.6- 2.1

a 7.0 3.2 1.9 8.3j

Verify that the addition could be accomplished by
premultiplying the matrix by a row vector, [1 1 1].

This js a convenient way to find the column sums when
We are using a computer to perform the calculations.

QdRittion: If we wished to ffnd the sum of.

the rows of a matrix by means of

. matrix multiplications, how could

we4 do it?

1.7 . Exercises

1. Suppose the number of servings Of each recipe to be prepared on

a given day for podhd cake, scrambled eogs, omelet, and beef

,stroganoff is, respectively, 5,10',w2, and 50.. .Using matrix $

multiplication,'calculate the amount of each food,,needed on

that day. The resulting vector is called the (input)food

,package for the day.
.

Of
2. Find the cost of the food package using the price vector given

4
X

in Sectioh t.5.

3. Supp56 that number of recipes for several days is as follows:
.

Day 1: 10, 2, 50

'04.2: 2, 3, . 3% 6

Day*3: 1, 1, 10, 0.

These recipes are'the same as those in Problem le Formulate

these needs as a matrix. Find the total amount of each food

needed for each of the three days (or find the input food

package for each day).

4. Find the cos of the food package for each of the three days

using the rice vector given in Section 1.5.
.

- 4



1.8 Sample Menu..1>ems and Costs Per Serving

Sample Menu 'Items
Cost in Cents
to Mpnagement
- per Serving

Dressing and Gravy

Brown Gravy 6.66
Onion Gravy 0.93
Spanish Sauce 3.75
Tartar aucjf 1.98
Bai-B-Q Saj4e 1..25

Chicken Gravy 0.53
Cole Slaw Vinegar Dressing 0.36
Pimento Cheese 4.38
Russian Dressing 2.41.

French Dressing 1:29,

Thousand Island Dressing

Lemon Sauce
. 0,76'

Whipped Topping 1.08

Pickle Salad Dressing

'IOntrees

Beef Stew with Vegetables

-\Chili With Beans

)4eat Loaf and Gravy

Oven - Fried, Steak

RoastBeeF with Gravy

Country-Stxle Steak

SmOthered Steak \),..

Baked Swiss Steak

,Baked Macaroni and Cheese

Baked Haddock

Sole Fillet.with Tartar Sauce

Fish Sticks with Tartar Sauce

Salmon Pattie

Waded Pork Chop

Breaded Pork Cutlet-

. Chop with Mexica0 Sauce
N
..leep-Fried Pork Cutlet

Roast Fresh Ham, with Gravy
\\\

22,95

18.46

22,90

28.16

40.93

48.94

50.51

54.52

10.00

30.77

32.004 .

. . .

12.25

52.49

56.54

42.14

48.30

4.21

34.29
S
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Sample Menu Items '

Cost in Cents
to
per Serving..,

Bar-B-Q Chicken

Fr4d Chicken

Roast Turkey with Gravy

Chicken -Flied Veal Cutlet

,

46,21

44:50

44..45

Oven-Fried Veal Cutlet

Baked Ham Loaf '

. 42.21

32.93
..

Hot Corned Beef. 134.50

Smothered L'ver with Onions 34.36

Polish Saus ge . 30.12

Sauteed Chi en Livers 16.80

Vegetables

Buttered Whole Kernel Coxn 4.31

Seasoned Hominy 4.18

Baked Beans 7.90

Seasoned yed Peas Z.85

Buttered Green Lima Beans 5.34

Buttered'Egg Noodles 2.23

Potatoes Au Gratin 4.97

Baked Potato 8.26

Buttered Diced Potatoes 4.16.

Creamed Diced Potatoes 2.47

Hash Browned Potatoe's 8.49

French Fried Potatoes 16.12

Whipped Potatoes. 2.51

Oven-Browned Potato 8.68

Paprika Diced Potatoes 2.84

11,Buttered Steamed Rice 2.41

Rice Pilaf 3.06

Glazed Swett Potatoes 8.67

Buttered Steamed Cabbage 5.16

Harvard.Beets 2.61

Cauliflower Au Gratin 6.94

Buttered Broccoli ' 7.55

Buttered BrusseL Sprouts 14.29

Buttered Cauliflower 10.30

1 0.

6



.c
Sample Menu Items

Cost in Cents
to Management
per Serving

Buttered Diced Carrots 4.58

Parsley - Buttered Carrots 4.48.

Buttered Spinach 6.30

Buttered Chopped Turnip Greens

Buttered French-Cut Green Beans 8.68

Buttered Canned ,Green Beans 12.14

Buttefed Mixed VegetableS 8;50

Buttered,Groest Peas 10.26

Buttered Wax Beans 10.28

Stewed Totatoes 6.47

Buttered Onions 6.82

, .Seasoned Yellow Squash 12.86
.4

Salads

Pineapple Waldorf Salad.ay. 8.86

Strawberry Jello with Bananas 4.43

Cabbage Slaw/Green Peppers 4.90 :
.Mardi Gras Cole Slaw 5.34

Ca,irot-Celery Sticks 3.24

Relishes (Crts, Dil Pkls, Rp Olives) 7.52

Stuffed Celery 4.7,0

Deviled-Egg Salad 7.87

Lettuce Wedge/Russian Dressing 6.99

Tossed Salad/French Dressing 6:85

Lettuce Wedge/Salad Dressing 10.93

Tossed Salad/1000 Isle Dressing - 5.95

Marinated Vegetable Salad 8.51

Ambrosia Salad lk.29

Jellied GrapefrUit Salad 6.98

Peach-Cottage Cheese Salad 10.88

Jellied Pear Salad 8.22

Pineapple-Cheddar Cheese Salad 10.37

Sliced Tomato Salad 10.95

Perfection Salad
A

4.06

7



Sample Menu'Items
Cost in is
to Management
per Serving\I

Desserts

Apple Betty

Canned Apricots 6.22

Banana Layer Cake 16.5
Gingerbread with Lemon Sauce 10.67'

White Layer Cake with Icing 10.57

White Bread 2.36'

Milk, '8.00

Cherry Pie //\'` 13.03

Angel ake/Whipped Choc Topping 10.50

Gelatin Cubes 2'230
-

Lemon Sponge Custara 4.12

Canned Fruit Cocktail 9.52

Peach Pie 12.96

Canned Pears 6.72

Vanilla Ice Cream' 8.07

Rice Custard ,4.22

Pumpkin Pie . 15.00

ea'

.1111110-

r

4 8
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1.9 Model Exam

1. Use Computer Program 1 in Appendix A to calculate AB for

4

13

19

10.4

16.4

7.7

13.7

25.4 22.4 20.2 34.6 5.1 11.1 )7.5 24.1 29.8 39

A= 32 29.4 _26.7 B= 32 2.5, 8.5 15 21.5 27 36

37:6 35, 324 0 6' 12 18 24 30 36

42.4 40 37.2
46.6 44 41.3

2. Us" the following format,

Meat Potato

z

Menu 1

Menu 2

Menu 3 -

Menu 4

to write a matrix of

four menus. Costs per serving

Vegetable' . Salad Dessert

costs, A, Tot the items shown in the following

Menu

Baked Swiss Steak

Hash Biown Potatoes

Buttered Spinach

Tossed Salad/French Dressing

Canned Fruit Cocktail

Menu 3

Bar-B-Q Chicken

Whipped Potatoes

Harvard Beets

Lettuce Wedge/Russian Dressing

Lemon Sponge Custards

may be taken from Section 1.8.

Menu 2

Baked Ham Loaf

Glazed Sweet Potatoes

Stewed Tomatoes

Pineapple Waldorf Salad

Gelatin Cubes

Menu 4

Hot Corned Beef.

Oven-Browned Potato

Buttered Steamed Cabbage

Relishes

Cherry Pie

3. SolVe this problem using the 4 menus shown above:

A cafeteria serves5dMenu 1, 75 Menu 2, 37 Menu and 46

Menu
8
4 orders. Use matrix multiplication to find the total

cost for each type of menu.' k

1

13
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2. APPLICATIONS OF MATRIX METHODS:

FOOD SERVICE AND DIETARY REQUIREMENTS (U109)

2.1 Challenge Problem

The manager of food services for a large hospital

has the use of a computer to assist him in the management

of his service. Heunderstarids that a computer'is use,ful.

in financial accounting, but the is hopeful that it can

be used to help him plan ahead and, perhaps, imprOe his

services. One of his problems is...that he must keep the

cost of food served at a reasonable price and, at the

same time, meet the nutritional requirements for balanced

or thertpeu,tic diets. Dietitians, of course, plan meal,

but the coordination of this activity With the purchasing

and preparation of food is needed also. He feels that 1

some of this work could be reduced by using a compbter

to give information which would help in making decisions.

The computation of the nutrient content of a menu

item is simple arithmetic once the data has been assembled.

The-sum of the products Of the number of units of the

food items needed for the recipe of the menu item and the

nutrients, will, of course, give the total for each

nutrient in the menu item. But, there are hundreds of menu

items and food items; moreover, new recipes are constantly

being added and old ones.discarded while theyrice of

food items change. There must be some orderly way of

managing all this. i

de

It has been suggested to the manager that he should

ett up files in matrix format to handle -all these data.

He is confused about this concept, and he calls you in

as an assistant and mathematician to the project. Your

task is to help him formulate his problem mathematically,

and to setup the files as m trices. eA

Question: What is m nt by setting up/les in

matrix format?

614

,
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Anpgyi-: Data in the files are arranged in row.

- and columns so that matrix operations

may be applied to them.

2.2 A Recipe Matrix.
.

. A recipe matrix is one of the first files constructed.

In order to make this clear to the manager, you construct
,

a small matrix of menu items shawing their ingredients.

With the help of someone such,as the fodd'preparation

sunervisor, you create the sample recipe matrix, as you

did in Section 1.4 of Unit.10S.,

Food Ingredients

a II
a 21

a31

Menu Items

a12 . a 1 I
a 22 a 23

a32 a
33.'

_
a14

a24

a34.

2.3 Assignments (Optional)

1. Make a limited vetiPe matrix, Consult a competent

resource person for actual recipes, if needed.
,

Questions: What does each- column of the matrix

repregent? What does each row of tho

matrix. repretent? What does each

element of the vtrix represent?

Since you will be using this matrix in'arithmetic

operations, it is n2cessary that the numbers be in stan-

dard units. In quantity food preparation, food is

measured by weight rather than spoonfuls, cups, etc.

The 'limber of units in the recipe for each food should be

sufficient to produce one serving for a normal diet.
o

2. Create a nutrient matrix for each food in your recipe

file. Suggestion: Let the entries in column i represent

the nutrients in food ingredient i. (See,Suggested Support

Materials, inside front cover,) Many books on nutrition

contain extended tables of nutrient values, for example,

Nutrition, Chaney and Ross, Houghtpn Mifflin, 1971,

45.

15
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contains such a table. The standard nutrients to use are:

1. Food energy (calories)

2. Protein (grams)

3. Fat (grams)

4. Carbohydrates (grams)

5. :Ash (grams)

6. Calcium (milligrams)

7. Phosphorous (milligrams)

8. Iron (milligrams)

9. Sodium (milligrams) %

10. Potassium (milligrams)

11. Vitamin A (international units)

12. Thiamin (milligrams),

13. .Riboflavin (milligrams)

14. Niacin (milligrams)

15. As'corbic acid (milligrams)

keeping in mind that Tie hospitql ay-riaw a reduced price

Questions: What do the columnsOf the nutrient

r matrix represent?

What do the rows of the nutrients matrix

represent?

What does each element of the nutrient

matrix represent?

3, Using. the recipe matrix and the nutrient matrix,

find the,nutrient content of each recipe.

Vote that if, in constructing the nutrient matrix,
a

you failed to make it conformable for matrix multipliAs

cation, either pre- or post-, Olith the recipe matrix,

an adjustment will have to be made.

4. Prepare a price vector (a atrix consisting of one

.row or one column) for the foods in your recipe matrix.

Make your prices conf.221 to "reality" as much as possible,

for some items which are purch'ased,Jin quantity.'

Find the cost of each'recipe'using the reCipe'matrix

le

and the price vector. Which recipes are the most expensive?

12
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Referring..to Assignment 3, compare the nutrient content .

of the most expensive recipes with that 'of the least

expensive. it

5. .Prepare a serving matrix, that is; a matrix con-

sisting,of the number of servings of each menu'itemper..

day for some period of1time. One week would be a:satis-

factofY period. Keep in-mind that not every recipe need

be.preparONevery day. Using this"' information,- and the

previous matrices which you constructed, how would you

find a matrix showing the amount of each foOd needed per

day,? How would you find the cost per-day of-the food

required? Perform these calculations.

DietsMeeting Certain Requirements

At this point, we turn our attention to a different

type of problem: Suppose that a doctor has ordered that

'a patient's diet meet a minimum daily requirement.of 1

uhit of thiamin, 2'units of niacin, and 3 units of iron.

If we sq.ect three menu items (food items could also be

used) which,contain these vitamins in the following

quantities,

- M1 M2 M3

Thiamin 1 0 1

Niacin 0 2 ,3

Iron 4 0 1-

.what portion o recipe (or food) should be served

to the patient to meet the minimum requirements?

Solution:

Let xi

x2

x3

= the portion of the first

= the portion of the second

= the portiol\of the third

item needed,

item needed,

item needed.

Then for thiamin xi + th3. > 1, .)*

for niac4n 2x2 + 3x2 > 2,

andiron 4x1 +--x3 > 3.

1 13
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These conditions in themselves are not enough to

guarantee that a tmr4ple ca values (xl, x2, x3) will

give the proportions that the patient needs. This is

because the system of inequalities may have solutions in

which one or more of the variables takes on a negativp

value. For example, the.riple of values xl = 2, x2 = 3,

x
3
= =1 satisfies each of the inequalities. However, we

can eliminate the possibility of such solutions by
;

requiring the variables to satisfy the additional three

inequalities xl > 0, x2 > 0, x3 > 0. These inequalities.'

merely formulate the obvious statement that menu portions
are never negative;

Now, we can,certainly satisfy all six of our

inequalities with 'huge values of.xl, x2, and x3. But to

'beet the 'patient's dietary requirements more economically,

we look for non-negative solutions of the equalities

This suggests the following system of equations:

4

XI t x3 = 1

2x2 + 3x3 2

4x + xa = 3.

The matrix representation of this system 'is,
3.

A

,[1

0

4

-0

2

0

A

1

3

1

x1^

,[
x2

X3

X =

3

B

Verify that this is true by multiplying A-and X: and

showing that the product equals k. The results should

be the three Iriginal equations.

To complete the sollykioh, let A-1 bb the inverse

matrix A (if there is an inverse for A).

*It-
is to be remembered that not all' matrices have inverses. The

inverse exists if and only if 1A1 (determinant of A) has non zero.
value. Also a matrix B is called an inverse orA if BA I 3. AB.
Indeed, if the inverse' exists then. it is unique. For more details
see any standard book ion linear algebra.

14
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TheIL, A -1AX = A -1B

and IX = A -1B

X = A -1B.

1

A -1 -2

4

then

3

2

3

X= 1

1

Or

4.
Si

2

53

-17
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2.5 Research Project

tat

0

1 1

7 7

o
1

Find the recommended daily nutirtional requirements

for a normal person. You can use yourself as the person

in questin ozder to specify characteristics such as

sex and weight. 'Construct a,recipe matrix of the menu

items that you eat for a giv n week. Does your diet meet

the recommended daily nutrit nal requirements most days?

Does the average of the daily take for week meet

these requirements?

0

.14

19

15
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Z.6 'Model Exam

General Directions:

In this test, do not perform any computations or assign

numerical values to the elements of the matrices,you.construct.

To indicate the structure of a matrix, simply label the contends'

of-the cojumns and s as shown beloW.

Name of Items

Represented by
the Columns

P .. a,as

a
12

a
22

.

a
13

23

,
I Name of Items

Represented by
the Rows

it.

In food preparation, a subassembly is a part of a menu item

which may be prepared separately, for example, salad dressing,

frosting fbr a cake, or pie cruse dough. Sdt up a matrix to

Show the food content of a set of subassemblies.

2. Suppose you wished to compute the cost of each subassembly.

What sort of matrix would you need, and what kind of informa-

tion uld it contain? Show the matrix operation which

would compute this cost. Represent the matrices as indicated

in the general directions.

3. Show how you would compute the nutrient content of the sub-

assemblies.

'4. Below are two nonsense matrices c alled A and B.
0

Gooies

an a12 a13

A * a21

[

a22 a23 Fudge Items

a a,2 a
4

Unit cost of fudge items:

' B [b
b12 blj

Interpret the product BA.

leo

20
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5. in this section we have been concerned with the following

activities:

a. Deciding On the kinds of information needed to answer

certain gOestiont

b: Collecting data

c. Displaying data in a matrix
-

d. Deciding on, the matrix operations to be applied to

obtain information from data

e. Making computations

f. Interpreting results

Which of these activities do you consider the most difficult

and which the easiest? Give reasons for your answers. .

(This queStion is evaluated on'the reasons you give for

your answer.)

law
1

The' Project would like to thank Kenneth R. Rebman of
California State University, Hayward, and George Springer of
Indiana University, BlooMington, for their reviews, and all
others who assisted in the production of this unit.

.e

..3his unit was field- tested and/or studejt reviewed by
Ellen Cunninghan, SP, St. Mary7of-the-Woods College, 'St. Mary-of
the-Woods, Indiana; Robert.M. Thrall, Rice University, Hatston,
Texas;'Philip D..§traffin, Jr., Beloit College, BeloLt, Wisconsin;
Michael A. Grajek; Hiram College, Hiram,, Ohio;'Donald G. Beane,"
The College of Wooster, Wooster, Ohio; Dina Ng,,,California Polytech
,State University, San Luis Obsipo, California, and; ,Henry J. Osner,
Modesto Junior College, Modesto, California, acid has been revised
on the basis of data received lromthese sites.

eie

21

17



cto

3. . ANSWERS TO )EXERCISES (U105)

. ,Answer to question on page 4.

. ,Postmilltiply the matrix by a column vector consisting of l's. 6

In the above case, use: 1

1 1

11
1

I. 1 .5 1 0 5 12 eggs

1 0 .25 0 10 5.5 flour

1 0 0 b 2 = 5 - sugar

1 .25 .25 0 . 50 k 8 butter

0. 0 0 1 50 beef stroganoff

Note that it was necessary to pospcmultipfy the ingredient

matrix by the number of recipes vector. This vector was formulated

as a column vector. Verify that the proper sums of products were

formed in order to give the total quantities of eggs, flour, etc.

ft 2. (70 10 25 50 100] 12

5.5

5

8

= 6420.°

1_50

3. El 5 1 0 5 2 r 12 6.5 11.5

1 15 .25 0 10 3 1 5.5 2.75 3'.5

1 0 0 0 x 2 3 10 = 5 2 1

1 .25 .25 0 50 3 -6 8 3.5 3.75

0 0 0 11 [50 6 0

4. (7b 10 50 100] x 12 6.5 11.5.75
O

5.5 2.75 3.5

5 2 1
= (6420 1307.5 1052.5]

8 3.5 3.751

50 6 0.j

O

22
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4. ANSWERS TO MODEL EXAM (U105)

1. Input Matricei

13.000 10.400 7.760
19(100 .16.400 13.700
25.400 22.400 20.200
32.000 29.400 26.700
37.600 35.000 32.400
42.400 40.000 37.200
46.t00 44,0D0 41.300 7

34.600 k 5.1d0 o.1L100 17.500
32.600 2.5.00 8.500 15.000
0.000 6.600,, 12.000 18.000

MaA Product

o I

782,599 138.500
1182.199 220:099
1595.639 306.739
2048.000 396,.8.V9

2420.559 473.09
2747.b40 539.439
3020.360 595.459

&
. 1

2. Meat

II

M1 0.52
M2 32:93
M3 46.23
M4 34.50

3.- To find the cost of

to, sum the costs of

o

= .

. -
'24.100 .,29.800 39.000 .

21.500' 27.000i 36.000
24.000 30.000 36.000

'"

325.099
514.899

522.099
825.099

7,21.699

1139.300
899.199
1420.000

1158.600
'1824.604

e

714.739 1144.099 4528.539 1967.719 2524.199
925.459 1481.599 2044.099 2548.399 3267.600
1103.659 1766,199 21136.259 3037.479 3892.799
1257.039 2011.599 2774.639 3459.519 4432.799
1386.859 221'8.899 3060.259 3816.679 4888.206

Potatoes 'Vegst.ables
r

Salad Dessir,
8.49 , 6.30 6.85 9.52
8.67 6.47 , 8.86 2.30
2.5JA 2.61 6.99 4.12
8.6B-

-
5.16 ' i.52 13.03

One

the

4ervingoi an individual menu, we need

component menu items( ie., we need to

find-the sum of a row of the matrixof'costst A. This can be'

done by post-multiplying A by the vector

A
a

The result will be a vector whose components are the costs of

the menus:

[cost (menu 1) cast (menu 2) cost (menu 3) cost (menu 4)1

0
P

to_S;ind the total cost to the cafeteria, multiply this vector
ta 4

by the number-ofg'serliings vector

. *.

0
4. 4

2 3.

19
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1

c

50
75

37

Not ce pre-multiplying matrix A by C gives a cost vector

whose elements wiuhkrepresene the total cost for all the

...menus of:

[meat potatoes vegetables -salad dessert]

but not tile cosi of the individual menus. We see that it is

important to consider carefully .ghat the entries in a product

matrix reprEsent and the order of mtiltip/fcation.

.0"

I

0

24
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a 5. ANSWERS TO MODEL EXAM (U109)

1-2. Let f2, f3, . . repeesent entities of food items,

and SI , 53, . . be, subassemblies containing' these items.

Let ,c, c2, c3, . be unit costs of these food items. Then

c2 c3. .

(Cost vector)

s, 52 53

.] x fu

4

f12

fa

f,
f2f

(Foo item matrix'

%soete.f.may be zero.

n,Cost of each
/sub- assembly

..,-
3. Be careful of ths. problem. It is deliberately vague. One

- interpretation would be to compute the total nutrient Content

t

-

of several subJassemblies. Then the problem may be set up i

as follows:

[al a2 a3 .3

(quantity of each
sub-assembly
prepared)

J

1.1

f3

n
1

X
11

. x22

X31

ot

n
2

\

\ X
12

X,

X112

n
3

Xn

x23
X33

(Nutrient vectors showing
'unit'qUihtities of each
.for food items.)

The product13,4A=acosi vector for Gooies.

Total of each
nutrient in
set of sub-
assemblies

5. Individual answers are acceptable. However, for the type of

problem we are solving here actPVity a and activity c are .

larobably the critical, ones. Activity f,.ls importdnt, but

should not be difficult if the others are performed properly,

COmputati'ons should not be considered difficult if a compoier

is,used. ?Deciding on the matrix operations to be applied

should follow from the matrix structure.

21.
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APPENDIX A

C*****APPLICATIONS OF MATRIX METHODS PROGRAM 1

C*****THIS PROGRAM PERFORMS MATRIX MULTIPLICATION ON ANY NUMBER OF PAIRS
'OF MATRICES
DIMENSION A(20,20),B(20,20), C(20,20),IHEAD(40)

C*****NR = LOGICAL NUMBER FOR THE CARD READER.
NR= 2 d-

C*****NP = THE LOGICAL NUMBER FOR THE PRINTER.
11P . 5

C * ** *READ ITINTIFICATION WIRD LAST CARD SHOULD CONTAIN /* IN COL. 1-2.

100 READ(NR,1,END=70) !HEAD
1 FORMAT(40A2)

WRITE(NP,3) IHEAD

3 F0IIMAT(1H1,40A2//)

C READ THE.NUMBER OF ROWS AND COLUMNS IN THE FIRST MATRIX.
READ(NR,5) NROW, hCOL

5 FoRMAT(215). 0
C*****READ THE FIRST MATRIX.

DO 10 I = 1,NROW
READ(N ,7) CA(1,J)1,1=1,NCOL)

'

7 FORMAT( OF5.0)
10 CONTINU

. C*****READ THE MBER OF ROWS AND COLUMNS IN THE SECOND MATRIX.
READ(NR;5) ,MCOL
DO 20 I = I,MROW

C*****READ THE SECOND MATRIX.
20 READ(NR,7) (B(I,J),J ...1,MCOL)
C*i***CALL THE SUBROUTINE TO MULTIPLY TAE MATRICES.

.CALL MATMY(AANROW,NCOL,B,AROW,MCOL,C)
C*****WRITE THE INPUT MATRICES. .

*;

kWRITE(Nr,25)
25 FORMAT(5X,'INPU14MATRICESW)

DO 35 I = 1,NROW!
"WRIII(NP,30) .(A(1,J),J = 1,NCOL) ,

30 FORMAT(5X,10F10.3)

35 CONTINUE
WRITE(NP,40)

40 FORMAT(///)
DO 50 I = 1,MROW

50 41TE(NP,30) (B(I,J),J = 1,MCOL)
C**** *WRITE THE MATRIX PRODUCT.

WRITE(NP,55)

55 FORMAT(///5k,JMATRIx PRODUCT' //)
00'60 P.= 1,NROW

60 ,WIIITE(NP,30 (C(1,4,J=1,MCOL)
C***t*RETURN FOR ANEW PROBLEM.

GO TO 100 ..

70 CALL. EXIT

26

./

22



S

SUBROUTINE MATMY(A,NROWACOL,B,MROW,MCOL,C)
DIMENSION A(20,20),B(20,20),C(20,20)
NP.= 5
IF(NCOL-MkOW)20,10,20

"Y.20 'WRITE(NP,15)
15 FORMAT(5X,'NUMBgR OF COLUMNS IN FIRST MATRIX MUST EQUAL NUMBER OF

1ROWS IN SECOND MATRIX')
CALL EXIT

10 DO 40 I = 1,NROW
-D0.40 J = 1,MCOL
C(I44) = 0.0
DO 40 K = 1,NCOL

40 1:(4,J) = C(I,J) + A(I,K)*B(K,J)
RETURN

' END

(

Ae*

r

a
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1. (UNIT 107)

1.1 Introduction

.

,fin order to understand what is meant by a- Markov

chain, co9Sider the following situation.
...

In dCertain class, a teacher has observed that

students' performance on tests is affected by how well

or poorly thelFhave done on the last test taken. In

particular, 80% of the students who did well on the last
test will rate All on the next one, 15% will be average,
and only St will be poor. For those who were rated as

or average, on a test, 60% will continue to be average on
the next test, while 10% will do well and 30% poorly.

For those students who were rated as poor ,N ly 1% will

'1-1.%do well, 15% average, and the remaining 84% wi continue
to,rate low in the next test. We can'think of this as a

process which will continue through several tests. For

the sake of discussion, we will ignbreany factor which
might upset these predictioris. .

1.2 Tree Diagrams

These Irobabilities'can be represented by a tree
diagram. Let the ratings be labeled as:

a
2
= good

a2 =-average

as = poor

Where a
1'

a
2'

a
3 represent the current 'test score for

any student. If westart with a student who has received

a good grade, we can show the pbssibilities'for the

next test with a diagram.like the one below.

32

Figure 1.

In Figure' 1, the lines drawn from al, or branches

from a1, are labeled with the probabilities that any

One of them will lead to the next event; that is, getting

a grade of good, average, or poor. Since these are the

only possibilities, one of them must happen if the student

takes another test. For this reason, the sum of the

probabilities stemming from any one point must equal 1.

Otherwise, some event could happen which is ngt accounted

for.

Since we know the probabilities for the students

who receive average or poor grades, we can extend the

tree in Figure 1 to show this information..

Figure 2 shows the probabilities through a series

of tests. The branches stemming from the left-most

a1 point to the three outcome points for test 2. The

branches from each of these three points indicate the

prObabilitie.s for test 3.

3:3
2



. Figure 2.

Representation of probabilities in the form
above is called a tree diagram.

1.3 Calculating Probabilities' From a Tree Dia ,gram

Suppose we wished to Know the probability of getting

a good rating on the third testiox a student who had

receimd a good rating on the first test. If we examine

Figure 2, we see that.a/ appears three times in the

right-most column, which indicates the. outcomes for the

third test. These three paths are along the branches:

.1* .a 4 a -+ a
1 1 1-

a
1

"4: a
2.

-+ a
1

a
1

-+ a
3
-+ a

1

According to the rules of compound probability,

the probability of one event following another is the
*

product of their.probabilivies. Therefore;,. the

* fir the product rule to hold, the events in question must be

independent. n .

34
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probability for each of these series of events is

.

al - al - al = .8(.8) = .6A,

. a1 F14 - al = .15(.1) = .015

'a
1
- a

3
a
1
= .05(.01) = .0005

Since one of these events must occur if the test is

taken, and singe the events are mutually exclusive (cannot

occur together), the probability ,of receiving a rating

of good on the third test is'the sum of the probabilities°

of completing the" paths shown above.

Thus, the possibility of reaching al in two moves

is .64 +'.015 + .0005 6555. If we were to explore

this process beginning at any state, we could compute

the probahilit4; for any subsequent state in a similar

manner.

1.4 The Matrix Representation of a Markov Chain

The format of the computations made in Section 3

suggests that the ,information in the tree diagram could

be structured as a matrix,

a
1

(good)

M =
a
2

(average),

a
3

(poor)

a/
a
2

a
3

(good) (vergge) (poor)

.8 .15 .05

.1 .6 .3 I

.01 .15 ..84

40 to which we attach the meauing: the probabiliity of

going,
-

in,,one step from

al to al
p11 = .8

1 a
1
to a

2
.= p = .15

11.

al to a3 = p13 = 05.

ea
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Exercise 1:-__-_,-_--

Complete by giving thepeaningpf and probability for

o =
r22

P22=

P23=

p31

P32f

P33=

44,

The process described in the preceding section's'ts
oan example of a Markov chain. Such a chain consists of

a series of states, an'd the probabilities df passing,to

a new one in some defined process. As the example shows,
'each state is always dependent on the one that piecedes'
it.

1.5 Experiment 1

.1
Use the test example and the computer to compute the probability

of being in state a1 or a2 oria3 beginning. in any one of the three

states after the second test; the thi.rd test; the
n
fourth test,

Hint: Do you see that multiplying the matrix,M,

by itself according to fhe rules of matrix
multiplication will give the desired proba-
bilities for the second test?

6

Interpret MMM =

-What is the prdbability that the' third test will be rated

(-r--17:Zge if a stude

Extend t

did so but 15% btcame full-time housewives and 15% worked full time,

'with 10% having a full professional career. The daughters the

makes theplculations simpler and more likely to be accurate when

using acomputer than when working manually from a tree diagram?

1.6 Experiment 2

Assume that women's occupations could be classified as follows:

Housewife-4 full time La W1

Housewife)//part time work outside = W2

. Full time-work outside home = W3

Full time professional career
W4

A sample is taken of women who have at least'one daughter.

The'following trends were noted: Of those daughters whose mothers

hat been full-time housewives, 50% were classified as W1, 25% as

W /20% as W3, and 5% as W4. For those whose mothers were housewives

and orked, part time outside the home, 60% of the daughters also ,

was rated as poor in the first tests
'r.-4

..t.
..-----tree diagiam in Figure 2 to showthe continuation

-I
of the process through four steps. Calculate the proba bilities of " ' *-

'being in state
404

a
1
or a

2
or a2 after the fourth test, Using the tree

4' diagram and the method simownion pages 3 - 4. Compare this with the

results
10,
Obtained by calculating M". Does the matrix method prodLiCa .

,

the same results? Do you see that uie of matrises in this problem,

,

36
S

full -time workers were distributed as fall.ows: 20% full-

housewives, 25% part -timed workers. 40% full-time workers, and

15% professional women. Finally, the daughters of Professional

women. wefe distributed in this fashion: 30% housewives, 20% part-

time workers,420% full -time_ workers, ands 30% professional wdmem.

Construct a matrix to represent a Markov chain for these data.

Assuming that this trad continues, find the probabilities

that a woman will have the'same career as her grandmother.

Calculate M2, Ms, M", Ms, M6 . up to any power you wish
e,for this matrix. You are now able to make long term predictions

about this process. What seems to be hilloeningl
1

37
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1.7 Model Exam (Unit 107)

1. In the matrix representation of a Markov chain,what do the

elements of the matrix represent?

2. The row sum of any Markov.matrix must be 1. Why/

3. The, ollowing diagram represents a maze. EaCh compartment

can be considered a "state" of the s9/9tem. If a rat is

placed in compartment al, what is the porbability that he

will escape from the maze after a given number of trails?

(A trial consists.of a.move from one compartment to another.)

Where there is only one way out of a compartment, the

probability of choosing that exit is, of course, 1. Clearly,

if a codpardnent cannot be reached directly from another

compartment, the probability of passing between these two

is zero.- Movement when there are multiple exits is considered

equ- ly probable.

a
5

(Exit from
the system)

Rat MSze

Draw a tree diagram to represent thls system, and then set

up a matrix of possibilities. -Compute the probability a

rat leaves the maze after three trials.

+38
7

)

a

2. APPLICATIONS OF MATRIX METHODS:

F/XEIS-POINT AND ABSORBING MARKOV CHAINS (UNIT 111)

2.1 Challenge Problem_,
.

Compitition is a way of life for the producers of

many things, from TV shows to detergents. One problem

stems from the fickle nature of consumers. They tend

to switch from one product to another.

For example, consider three TV networks which are

competing for viewers in a given time slot. Three

shows, SUNNY DAYS, LOTSA GUNS, and MOON URES are

all broadcast on Tuesdays( at 7:00 p.m. Su eys taken.

indicate that for those who watch SUNNY DAYS one week

thee is a probability that 60% will continue to watch

it%the next week, while 304. will probably switch to MOON

CREATURES, and 10% to LOTSA GUNS. For persons who watch

MOON CREATURES there is a SO% chance that they will

continue to do s; the next week, with 40% chaffing to

LOTSA GUNS, and 10% going to SUNNY DAYS. Finally, those

whO watch LOTSA GUNS have a probability of 70% of staying

with the show the following week, and a 30% probability

of switching to MOON CREATURES.

Let us formulate this information as a transition

matrix:

SD

SD

LG

.6

,1

.0

MC LG

.3 .1

.5 .4

.3 .7

SUNNY DAYS started out with 70% of the audience,

MOON CREATURES had 10%.and, LOTSA GUNS'had20%. In

spite of the good start, the cast of SUNNY DAYS were

worrying about their jobs at the end of the fifth week,

and were,defininly out of a job by the tenth.week.

* 8



Could this have been predicted? The answer is yes, if

it is assumed that the trend shown in-the survey continued.

In fatt.,".ittis pgssible io predict tHat eventually SUNNY,

'DAYS will have 9.4% of the viewers, MOON CREATURES will

have about 37.5%, and LOTSA GUNS will holt 53.1% of the '

audience. When that point is reached, there will be Bo

further changes. The probabilities bedome fixed.

In Unit 107 we showed that we could predict the

,state of h Markgir chain as the process went through

several stages'. We did this my multiplying the matrix

by or raising it to a power. We did not explore

the possibility of the matrix reaching A steady,state,

- that is, that raising, the matrix to higher and higher

powers no, longer changed the probabilities. We consider

this situation noW.

2.2 Regular Transition Matrices

A transition matrivrepresenting a Markov chain is

said to be regular if some rower of the matrix has only

positive .components.

The transition matrix from the challenge problem is

an example of a regular-matrix.' thOugh the .original

matrix has a zero element, ffwe to .the second power,

we find that all of the elements are p sitive. Verify

this by constructing the matrix and u ing Program 7 in

'Appendix A to find some power Of it.

A
,2.3 Fixed-Probability Vectors

A row vector that consists of non negative elements
it*

whose sum is 1 is called a-probability vector. From this

definition each single row of transition matrix is'a

probability vector. If a transitiod matrix is regulai,

then after a number of steps, sometime? a large number,

the probability vectors (rows) tend,to "become the sane

and remain fixed. To illustrate this, we use the

40
.*****""ftft"........0:

9

challenge problem. When the transition matrix for TV

shows is raised to the 20th power, it becomes

11.0937 0.3749 0.53121

]

0.0937 0.3749 0.5312

0.0937 0.3749 0.5312 ,

When this happens the process is in a "steady"

.,,tate. The probabilities will not change in future

steps. The row vector which gives these probabilities,

[0.0937 0.3749 0.5312]

is called the fixed probability vector.

,

2.4 Calculating a Fixed -Probability Vector

We can, of course, search for a fixed probability

vector by raising a regular transition matrix to a power;

continuing until the fixed state is reached. With a

computer this is not particularly difficult, although it

may converge slowly and the result be only approximate.

There is, however, a direct way of obtaining the fixed

probability vector.

If/p is.a fixed-probability vector for'a matrix A,

then it can'be shown that pA = p. If we'use this theorem,

we can set up a sy.stem of equations which can be solved

for the vector p

2.5 Experiment 1

Verify that multiplying the transition matrix for the challenge

problem in SecFlon 2.1 by the vector obtained in 2.3 gives the same

vector as the product. Thus'

0.6 0.3 0.1

E0.0937 6,37119 0.5312] 0.1 '03 0.4- = 0.937 0.3749 0.5312.

0.0 0.3 0.7

Use Program 1..

O
41. -
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2.6. A Fixed Probability Vector from a System of Linear
Equations

Since, for the fixed-probability vector p and the

regular matrix A, pA = p, then, if

=

[:6

fl0

6

A

and

p = [x1 x2] ,

[x1 x2]
F*0

L6 .4j

= [xl x2] .

If we carry out the indicated, multiplication, we
obtain

- 0
px

2
x1+ Asa =

41

.6x
2
= x

1

-a
1

+ .4x
2
= x

2

and bedause the sum pf,any row probability vector must
equal 1,

a

x
1

+ x
2

= 1.

2%7 Experiment 2

Use Program 6 in Appendix A to solve the three equations in

two unknowns which were develOhd is,Section 2.6 We restate them as

-x
1
+ .6x

2
= 0

xl 't '2 = 1

lnterptet the result.

Show that the same result could be found by rising matrix A

to a sufficiently high power. Use Program 7 11

. 42

2.8 Experiment 3

Four. companies are competing against each other with products

in toothpaste. A survey shows that the shift'from one brand to

the other can be presented by this transition matrix.

Brand A B C D

A .6 .2 .1 .1

B :1 .7 .1 .1

C .1 .1 .7 .1,

D .1 .2 4.i .6J

What is the long term prediction for each company'., share

of the market?

What change would occur, if any, if company D changed its

product and a new survey showed the transition matrix to be:

-No

A B C D

A .5 .2 .1 .2-

B .6 .2 .1

C .1 .1 .7 .1

D .2 .1 11, 1 . 6

2.9 Absorbing Markov Chains

Some Markov chains contain states from which, once

entered, departure is no longer possible. This state,

from which there is no return is Called an absorbing
state. We might have considered the rat maze problem
inUnit 107 as having such g state if we,assumed that

once the rat left the maze it could not go back in.

We can recognizean absorbing state from a transition
matrix. Any state, ai, for which the element aii is
equal to 1 and all other elements of that row are zero
is an absorbing state. As an example, recall the rat
maze prbblem on page 7. The transition matrix is

43 12



a
4

a5,

a
2

a
3

a
4

a
5

0 0 1 0 0

1 1O 0 I 0

1. 'I 1
T 3 o (0

1 1 1o , 3 1- o
T

0 0 0, 0 1

It should be immediately evident that a5 is an
absorbing state. The probability of going from a5
to al, av a; or a

4
is zero in each case. We note

that a55 equals 1 and the other elements in that
row are zd7p.

For a Markov chain to be an absorbing chain it
must be possible to get from,any non-absorbing state
to an absorbing state. Ont way to recognize this from
the matrix representation of a Markov chain' is to
examine the columns which contain the 1 for the absorbing
-slates. For each such column the remaining elements
mupt not be all zeros if there is to be a transition
to this absorbing state. For example, the following
Markov chain contains one absorbing state but is not
an absorbing chain.

a
1

a2 a3 a4 a5

a1 .5 .4 0 .1 0

a
3

.3 :2 0 .2 ,3

0 1 0 0

0 0 , .8 .2

1' 0 0 0

13 '

The state a
3 is an absorbing state, but there'is no way

to reach it from any other state: Since it is the only
absorbing state in this chain thechain in not an absorbing
chain.`\We could verify this by drawing the tree diagram
for this chain.

2,10 Exercise for Absorbing Markov Chains'

-State whether the following transition matrices are for

absorbing or foe nonabsorbing Markov chains.* Why?

a. Fl 0

L5 5

5 51

b. 0 1 "'

c. 1

Vii

d.
_

1 4

5 5
0

0 1 0

0
4 1

5' 5_

2.11 ASecond Challenge Problem

The Ace Collection Agency decides to add a service
for its departm.ent store customers, and, perhaps, impiove
its own business. The'president of Ace has observed
that some department stores turn over their bad accounts
for collection at varying times, while other companies
rarely use the agency. The latter companies simply
write,off unpaid bills after repeated attempts at
collecting on their own. The president of Ace proposes
that, for a reasonable fee, his agency will analyze.
the paying habits of customers who have charge accounts

45



with departm6nt stores. This analysis will produce, dt

is claimed, information that will enable a store to

decide on a policy for turning over bad accounts to a
collection agency. At the same time, the analysis.will

give the store a-way of calculating how long, on the

average; it takes for accounts to be either paid up or

classified as bad.

The managerof Homer' Department Store, after seeing

this analysis service advertised, decides to try it,

but he insists that the'method applied to determining '

e any policies for the store be made clear to him.hefore

they are effective. He asks that a representative from

Ace give an explanation of how it will be det mined that
a debt will probably end up as bad, or how long ebts

are likely to stay in various stages of being overdue.

The representative agrees to give an explanation.
He begins with ypothetical case. Suppose, he says,
that after studying our accounts it was found from past

history that Your customers' paying habits could have'

probabilities attached to them. These probabilities of

changing status from month to month are shown in Table I.

TABLE 1

ProbAllifiries of Future Debts of a Typical Clstomer

0

Present 1

Months
2

rn

Arrears 3

' 4

5

Paid-up

Bad

Future'Months in Arrears
0 1 2 3 4 5 Paid -up Bad

,60 .15 0.0 0.0 0.0 '. 0.0 .25 0.0

.20 .35 .25 0.0 0.0 0.0 .20 0.0

.10 .20 .10 .27 0.0 0.0 .13 0.0

.05 .10 ..20 .18 .37 0.0 .10 0.0

.02 .03 .07 .30 .28 .15 ..15 0.0

.01 .04 .04 0.0 .25 .45' .06 .15

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

46, -
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In this table, the status of accounts is given in

months overdue. If there are only current charges, this
.

appears in the 0 column. The entries in the table are

the probabilities of changing status from one month to .

the next. For example, a customer who is two months

in arrears (the row labeled 2) has probability of

.10 of haVing paid sufficient amounts op his account

to be classified as having oly current charges next
month. The same customer has a probability of .30 of

being stUl 2 months 'behind in the next mopth.

Some members of the Homer Department Store had

sufficient matheWical training to recognize that this
le (Table I) couidbejconsidered an absorbing Marlsov

. However, they wcie nbt advanced enough to know
how he questions 'that were asked by the president could

be answered from this information. More explanatiOn
was needed.

2.12 gl'aii.eard Form for an'Absorbing Markov Chain

Before answering some.q. the questions raised, it

is necessary to rearrange the absorbing Markov'chain,to
.

standard form. This requiresAnterchanging some rows
and columns of the matrix so tgat absorbing states are;

44
placed first. We illustrate 4his:Uaing,a simpler

matrix than the one deriued from Table I.

Given, the absorbing Markov 9kain in matrix form:

a a . . a
i 9 2 3 - 4A

.

absorbing states. To obtain a standgrd form for the

.

al --,1 0 0 01
,

.5 . 0 .5 0
t

a
3

0

.

0 .2

a4 0 0 0' 1_

we look for the absorbing states. From the dis'cus.sian:

in Section 2.9 we should recognize states 4.1 and a4 as
-

47 16



matrix, interchange the columns and'rows so that there

is an identity matrix in. the upper left hand corner.

As you can see, this can be accomplished by placing

,,the lbsorbini states first. This does'not change any

relationship, i.e., the probabilities of going from

one state to another are preserved.

a1

a 4

a
2.

a
3 .

a,14 a
4

a
2

a
3

1 0 0 40

0

.5

0

1 0 0

0. 0 .5

.1 .8 0

2.13 Partitioning the Standard Form

Once the matrix is in standard form, we can proceed

to p'tition it in such a way that '"four matrices are

formed the original. Later we will -see that we

can use hese new'matrices to help answer our questions

about the charge accounts: We partition the matrix in

this example so that there is an identity matrix in

upper left hand corner. Thus

ti

4

1 0 1 0 . 0

i\o 1 1 0 0

.5 0
O.

.5

o .2, I .8 ...0_1

0:.

O r

, and we label each new matrix as follows

0 S=
[ 05.

S

0

T =[
.8

T

A

If we review thi original matrix, we can see that the

entries in ; are the probabilities of being absorbed, and

the entries in f are the. probabilities of being in non-

absorbing states. This is title because .5 is the

48

O

17

,

A

probabili.ty of gOing from a2 to a1, and .2 is he proba-

bility of going from a3 to a4. (al and a4 are the two

absorbing states. Similar statements can be made for

the entries in Ti.)

There is a theorem (which we state but will not
- /

prove here? that is useful for our. purposes. On the

,average, the number of times a process will be in each

nonabsorbing state can be-found by calculating N = - T)

where I is an-identity matrix, and T is the matrix formed

by the partition just made.

Program 8 in Appendix A can be used to calculate

N = (I - T)-1 for our sample problem., However, since

-this is a very simple matrix we will do the calculations

by hand in orde.to illustrate the intermediate steps.

I -.T=

Therefore N =

a
2

-12

2
a
3

10 5

rz
3

1...t
10'

.

4

2.14 .Making Decisions Based on Probability

All the information in a Markov chaincconsisie'of

probabilities, but in the case of the charge accounts

these probabilities were\based on the pasthistory of

a largemumber of people's paying habits. They are

likely to be fairly predictive of the future. In the
absence of any other knowledge, past.history form's-\the

18
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best basis for making decisions about future events. We

will interpret the entries in matrix N and see how they

.form a basis for additional information upon which some

decisions might be made.

,Zpe interpretation of the entries of matrix N is

this. Starting in one of the npnabsorbing states, say,

a2, the mean number of times in state a2 before absorp-
10

andtitan is --6- and in state a, The total time before
'10 ' 5 15absorption for state a2 is -6-- + T or T. A similar

interpretation could.me made for- the other entries,

Question:

Answer:

The row

state before

row sums for

If this matrix had come from the
charge account problem, how would
you interpret the entries?

If a customer was.in state a2, we
would predict that on the average
in 21/2 months he would either be
paid-up or becdme a bad account.

sums of N,give the average time for each -

it is absorbed. If we wish to find the

some larger matrix, using the computer,

we can use Program 1 in.Appendix A and multiply N by

a column matrix consisting of l's. For example,

r10 s7

[ 86"

1

157
9

This is a convenient way to calculate row sums for a
large, matrix. The colutn matrix should ha.ve enough

l's to be conformable for multiplication.

.fs The Probability of Reaching a Given Absorbing State

We still have the question concerning the probability

of a giv5n absorbing state a$ th8 final one. If-i6u will
woo-

accept another theorem? we can answer this question.

According to the theorem, the product of N, just computed,

50.
e.1

19

and the matrix S from the partition on Page 17 is a
matrix which gives the probabilities of ending up in
given absorbing state. Fromfour example

Then

[lb

N
8 10

A = NS =
4 2

a3

'S =

5

0

a
1

a
4

S 11a
2 B-

0

2

We interpret the entries in matrix A as follows.
5Starting in state a2 there is a probability of w of

absorption in state a1, and a probability of 1-
of

absorp9mn in state de A similar interpretation is
made for" the other entries.

In the original example of Section 2.12 gll of
the matrices I, 0, 5,-and.T turn out to be square.
This' ill always be true for I and T, but is not4ft

generalk the case for.° and S. Consider the matrix
below along with itsstandard form

a
1

a
2

a74

a
4

a
5

The standard form

a1 a
2

a
3 a

5

1 0 0 0 0-

.5 0 .4 0 .1

0 .7 0 .2 .1

0 .8 0 .2 0

0 0 0 0 1

51
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a1

a5

a
2

a
3

a

a5

a' a a
1 5 2 3 4

_

1 0 I 0 0 0

0 1 I 0 0 0- --H
.5 .1 0

o .1 f .7 O .2

a 0 0 1 .8 0 .2

and we label each new matrix as allows:

1 0
I =

110 1

r.5 .1

S = 0 .1

0 0

Question:

Answer:

.1

o=
0 0

1_0 0. 0

0

T = .7 .0 .2

.8 0 .2]

If he matrix A had' come from the
charge account problem, how would
you interpret the entries?

If a customer was in state a2, we
'mould predict that there was a
probability of 5/6 that he would
end up in state al (which might be
the state "paid up"), and there was
a probability of 1/6 that he would
be absorbed in state a

4
("bad account").

2.16 Experiment 4

Form an absorbing Markov chain from Table 1 on page 15. Put

the matrix in standard form and then partition it as shown in

Section 2.13. Use Program 8 in Appendix A to calculate the matrix

N, and Program 1 to find the row sums of N and the product N xS.

Write a report on the informatio4you can give the Homer

Department Store as d result of these computations.

52
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2.17 Model Exam (Unit 111)

1. .Show that this matrix is a regular matrix.

I-0 1

2. Find a fixed-point for the following matrix.

-3 1-
-4' "4"

I I

2 2_

3. If P in question 3 is raised to the 100
th

power. what is

the approximate value of the entry in the first roO, first

column?

P =

4. Joe, as a student, is not very regular in completing

assignments. However, if Joe is late with an assignment

on oneadue date, he is 70% sure to have the next one in

on time. If he finishes an assignMent on time, there is

only a 29% chance that he will finish the next one on

time. In the long run, what percent of time does Joe

miss due dates for his assignments?

5. Does the following matrix represent an absorbing Markov

chain? Give the reason for your answer.

o o 01
.5 0 0 .5

0 0 1 0

_0 .7 0 .3

6. Put the following absorbing chain,in standard form.

a
2

1'

a
1

a 2

a
3

a
4

Which are the absorbing states

a
1

. 1

.2

0

a
3

a
4

0 0

.2 .5 .2

.3 .3. .2

0 9

in this chain?

53
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7. . if we start in state a3, how many steps will there be on

the average before absorption?

8. What Is the probability that if we start in state a2,

absorPtIon'will occur in state a4?

4

54
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'3. ANSWERS TO EXERCISES (UNIT 107)

Exercise 1:

a
2

to a
1OP,

a
2

to a
20 1922

.6

a
2

to a
3

= n =
- '23

.3

razto a1 t
P31

.01 .

a3 to a2. ,,= 1932 = .15

a
3

to a
3

= p33 = .84

I ti

55
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11: 'ANSWERS TO MODEL EXAM (UNIT 107)

I

1

. ^ of probabilities from a1 to a3, a3 to a4, a4 to a5. Thus

the probability that the rat leaves,,tfie maze is 1.1/3.1/3 =Each elemeni, cz.. represents the probability that a process 1/9. ,
f

.7 th.

which starts in the I. state will go to the jt
h

state in

one step. j can be equal to i. ,
0

2. Each row in a Markov matrix'representsthe probabilities

for all possible next states. The sun of these probabill4

ties must equalA to account for . all possible stateS°.

3

a

t.

t.

A tree diagram fpr the Rat Maze. Problem.

The Markov chain is:.'

'

1 .

^.

a1
1

al . `00

a
2..

v0

a
3

,. 1/3

a
4

0

5
0

s . --

0

o,

a,' a
2 134

0 1 ~'

OA 1/2

143 0

.143 .1/3

0 0

- s ,.

a
4

0

1/2

1 /3
.

0.

0

a5

01
0

Q 4

.
1/3

0'

,

J

5"

.

The probability that -the rat 'leaves the maze in three

trials ira 4/5. Itdeed, from the tree diagram above, the

Only:pOssibilltrfor the rat to leave the maze is to travel

*through ti4.branch "213. By the compound

.oprobabTlity rule, the probability of thiS,eveni is the product

25
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5. ANSWERS Td EXERCISES (UNIT 111)
t

absorbing

Reason
1.

There is an absorbing state, and

there is a way to reach it.

b. nonabsorbing There is.no absorbing state.

c. absorbing There is an absorbing state and a

way to reach it.

2.

d. abporbing Ther'e is a absorbing state and,a

way to reach it.

- 3.

s

6. ANSWERS TO MODEL EXAM (UNIT 111)

P2 =
[0

T

1]

LT ;LI

3

Since a power of P is positive,°the matrix is regular.

3 r
xil=

1 2
1 1

2

2-

3

rxL xd [4,A71

A. Let a
1

represent "assignments on time" probability, and a
2

a `represent "assignments late" probability. Then

5.

6.s

a
1

/,...ra
2

a1 1.2 .8

a
2

.7 .3_

km,

is the Markov chain for this problem. Solving for the fixed

point for this matrix, we find a1 = 7 8
, and a2 . The 1

long run probability that Joe's assignments will be late is
8

53.333% (1-0.
1;

The matrix represents an absorbing Markov chain. It has two

absoping states, a1 and a
/ 3'.

a
2

U3

o

.1

.2

a4. a
2-

a
3

0 o b
1

.2 .2 .5

.2 .3 .3

States a
1
and a

4
are absorbing.

_
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[1

7.

.3

-T

T

3

-1
= .8 -.5 -I 1.70 1.221.8

.7 .73 1.95]

The number of steps before absorption, beginning in a
3

is

5 = 2.68.

8.
N X S 1.70 1.22 f .1 .2 .414 .584

.73 1.95 J, .2 .2 J 463 .586

The probabil ty is 58.4%

approxima

PartrarAnssger-for-Exper-iment 4

Paid-up

Bad

0

1

2

5

Paid-up Bad 0 1 2 "3 5

1

,
1

0 0 0 0 0 0 1
o ' 1 0 0 0 0 0 0

.25 0.0 .60 .15 0,0 0.0 0.0 0.0 i....

,20 0.0 .20 .35 .25 0.0 0.0 0.0
.13 0.0 .10 .20 .30 .27 0.0 0.0
.10 '0.0 .05 .10' .20 .18' .37 P.O
.15 0.0 .02 .03 .07 .30 .28 15
.06 .15 .01 .04 .04 0.0 .25 f' .45

01

Nha.

0 0

fi0 .(1). 0

- _
.25 0.0 460 .15 0.0

.20 0.0 .20 .35 .25

0.0
T = )

.10 .20 .30

.10 0.0 .05 .10 .20

.15 0.0 .02 .03 .07

_.06 .15_ _.01 .04 .04

60

01

0 0 0

0.0 *0.0 0.01

0.0 0.0 0.0

427 0.0 0.0

.18 .37 0.0

.36 ,.28 ')15

0.0 .25 .45

29
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APPENDIX A

.PROGIAti 1.. .

t*****APPLICATIUNS OF MATRIX METHODS - PROGRAM 1

C*****THIS PROGRAM PERFORMS MATRIX MULTIPLICATION cfN ANY NUMBER OF PAIRS
C4' OF MATRICES

. DIMENSION A(20,20)03(20,201, Ct2'0,20),IHEAD(40)
C*****NR = LOGICAL NUMBER FOR THE CARD' READER.

4-NR = 2
c***'**NP = THE LOGICAL NVKR FOR THE PRINTER. -`-4J ,

4 6 NP = 5, A

A****READJDtNTIFICATION CARD., LAST CARD SHOULD CONTAIN /* IN COL.' 1-2 ."
'100. READ(NR,I,END=70) _IHEAD . 4,

FORMATI4042)
WAITE(NP,3) IHEAD

3 FORMAT(1H1,40A2//)
C*****READ THE NUMER OF ROWS AND COLUMNS IN THE FIRST MATRIX.

READ(NR,5) NROW, NCOL
5 FORAi(215)
,(*****kEAD THE FIRST MATRIX.

DU 10 I = 1,NROW
c. READMR,7) (A(I,J).,J=1,NCOL)
7 ,FORMAT(10F5.C)-

.,,CONTINUE
,c*****.READ THE.NUMBER,OF ROWS,-AND COLUMNS IN THE SECOND MATRIX.

fEAD(NR,5.) MROW,ACOL .

,- DO 20 =-q,MROW editi
C * ** * *READ THE'SECOND MATRIX. # -

20 REA(NR,7) (B(I,J11J = 1,MCOL
C*****CALL, THE $UBROUfINE TO MULTIPLY THE MATRICES.

:CALCMATMY(A,NEkOW,NCOLIB,MROW,MCCL,C)
C***vWRIJE THE INPUT MATRICES. .

0 . WRITE(NP425) A

0 25 ' FORMAT(5X,,I'NUT MATRICES,//)
DO 35 I = 1,NROW
WRITE(NP13Dr = 1;NC01)

30 FORMAT(5X,I1OF10.3)
35 CONTINUE

WRITE(NP140)
40 ' FC)RMAT( / / /)\

DO 50 I = 1,MROW
50 °WRITE(NP130}H(B(I,J),J.= 1,MCOL)
C*****WRITE°THE MATRIX 'PRODUCT.

WRITE(NP,55)
5 FORMAT( / / /5X,'MATRIX P(2ODUGT,//)

DO 60 I = 1,NROW
60 WRITE(NP,30) (C(I,J),J=1,MCOL)
C*****RETURN FOR A NEW PROBLEM.

GO TO 100
70 CALL EXIT_

4'
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PROGRAM 6!

C****APPLICATIONS OF 'MATRIX METHODS 1 PROGRAM 6
DIMENS1ON A(20.4)0(20.4).C(20.4),IHEAD(40).0BL(20.4)NR = 2
NP = 5

C****READ, PAGE AND WRITE HEADING
READ(NR,1) IHEAD

1 FORMAT(4042)
WRITEINP,3) `IHEAD .

3' FORMAT(1H1.40A2//) .

0***ACREATE OBLIQUE TRANSFORMATION MATRIX FOR 'PLOTTING.
0 0 4 I = 1 , 4

D0. 4, J = 1,4
4 OBL(I.J) = 0.0

OBL(1,1)= 1.0
MA2,2) = 1.0
OBL(4,4) = 1.0
OBL(3.1 ) = 0.4333
OBL(3.2) = 0.2500

C****READ THE NUMBER OF POINTS, MAX = 20..
READ(NR,5) N

.

5 FORMAT(I2)
C4***REA0 THE COORDINATES OF THE POINTS ON THE FIGURE. ,00 10 I = 1.N-

READ(NR.6) (A(I,J),J = 1,4) 4 .
6 *FORMAT(4F5.0).
.10 ,CONTINUE .

C.**. THIS TRANSFORMATION IS CARRIED OUT TO GIVE AN OBLIQUE PROJECTION.C****ALSO, THE Z AXIS IS FORESHORTENED:
CALL MATMY(A.N.4,0BL.4.4.C)
WRITE(NP.15).

15 FORMAT(5k.sORIGINAL FIGURE'.//)
CALL KPLOT(C.N.1.0.0.1)

C*****READ1 PAGE AND WRITE'HEADINV
100 READ(NR.I.END=30) IHEAD

WRITEMP.3i IHEAD
C.* **READ THE TRANSFORMING MATRIX

el DO 20 I = 1,4
READ(NR.6) (B(I,J),J = 1,4)

201 CONTINUE
CALL MATMY(A,N,4,B,4,4,C)
CALL MATMY(C.N.4.0BL.4.4.8)
'CALL KPLOT(B.N.1.0.1)
GO TO 100,

30 CALL EXIT
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-PROGRAM 7

c.

C ***** PROGRAM 7 APPLICATIONS 'OE MATRJX METHODS
..,

C milt POWERS OF MATRICES
oi.

. DIMENS'ION 'A 120,201 03(20.220)JC(20,20), IHEAC140 /
NR = 2

#:NP = 5 .
.,>.,,,f .. . ,

READ(NR,5)IHEAD +;
5 FORMAT (,40A2) c ...'

. WRITE(NP06)IHEAD
.6 FORMATI1H1,40A2'IM

C***** READ THE NUMBER-OFCROWS Aka COLUMNS IN THE MATRIX.
C**Iiiie N = THE ,POWER TO WHICH THE MATRIX IS TO BE RAISED:

READOR1101NROW,NCOL9N
r 10 FORMAT13I5/..

DO 20.1 '=.1.NROW \,

READ(NR115) (4111.6i4.74041)
15 +ORMAT1r6F5.0/. .,,,;.,,,

.. .
... ' rt .

Do 3-b I = / ;N'ROW
DO 30 J = 1 tNCOL, ..-

30 . 8(.1/J) := A(IrJ)
DO 50 K = 22N
CALL MATMY(A,NROW,NCOL.BINROW.tNC&X)
00 40- I .p 1 ,'ROW . ,

,,,00 40 J = I 'NM *:
40 A(I,J) = C(I,J)
50 CONTINUE .. u - a a,n: ;

Uu 70 1 = I INROW , q.
%

ielwRI TE.(NP 160) IA g 1 J1 ,J=IINCOLI
60 FORmA T(5x,11.P8.4)'
/0 CONTINUE

CALL E XI T
ENU

4,

463
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PROGRAM 8

I

4

C*****APPLICATIONS OF MATRIX METHODS - PROGRAM 8 ,

DIMENSION A(20,20),T(20,20)4(20120), IHEAD(40)
NP = 5
NR = 2

Clh***READ HEADING AND IDENTIFICATION CIF INVESTIGATOR.
READ(NR,107END=50) IHEAD

10 FORMAT(40A2)
o WRITE(NP120) IHEAD
20 FORMAT(IH1140A2//)
C******READ THE DIMENSION pF T:,--MUST BE SQUAT

READ(NR,25) N
25 FORMAT(I2)
C******READ THE ARRAY T

DO 35 I = ItN
READ(NROD) (T(ItJ),J=10)

30 FORMAT(I0F5.0)
35 CONTINUE
C*****FORM IDENTITY MATRIX

CALL IDN(A,N)
yt***CALCULATE.I - T.

CALL MA(SB(A,T,N,N,C)
C****CALCULATE THE INVERSE, -0F I - T.

CALL INVER(CtN)
DU 45 I ,=---11N

WRITE NP140) (C(I,J),J =1,N)
40 FORMAT 5)(910F10.4)
45 CONTINIE

50 CAL XXIT
GO TO

'%E
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SUBROUTINE MATMY

0 %) A 4....4

''SUBROUTINE MATM/(A,NROW,NC0L,8,MROW,MCOLIt)
DIMENSION A(20;20)0(20,20),91?0,20)
NP = 5 m

IF(NCOL-MROW)20110,20
20 WRITE(NP,15)
15 FORMAT15XONUMER OF COLUMNS IN FIRST MATRIX MUST EQUAL NUMBER OF

1ROWSAN SECOND MATRIX')
CALL EXIT .

10 DO 40 I =-1,NROW
10DO 40 J = 1,MCOL

C(I,J) = 0.0
DO 40-K = 1INCOL

40 = C(11.1) + A(I,K)*B(K,..11
RETURN'
END

SUBROUTINE MATSB

*ONE WORD INTEGERS
SUBROUTINE MpSB(A,BINROW,NCOL,C)
DIMENSION A(20,20), 8120,20), C(20,204
DC 10 I=1,NROW
DO 10 J=1',NCOL

10 C(I,J) = AU,J)-B(I,J).
'RETURN
END

SUBROUTINE IDN

*UNE WORD INTEGERS
*LIST ALL

SUBROUTINE 1DN (A,N)
DIMENSION A(i0,20)'
DO 20 I=1,N
DO 10 J=1,N

10 A(10J) = 0:0
20 ='1.0

RETURN
END
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SUBROUTINE INVER

*LIST ALL
*CNE RORD 'INTEGERS

SUBROUT-INE INVERIX,N)
DIMENSION X(20,20),A(20,40)
DO 10 I = ItN
DO 10 J = 1IN

= X(T,J)
M = J + N
IF(1-J) 20,15,2()

5 A(I,M) =1.0 ,

GO TO 10
20 A(1,M) = GEO,
19 CONTINU5

40 55 K = 1,N*
PIVOT = A(K,K)
IF(PIVOT) 35,30,35

30 WRITFI5,101/ 4

1C1 FURMAT(///ta0ZERO PIVOTI)
CALL EXIT

35 A(K,K) = I.

IR = K +1.
M = K+N
CO 40 J =
A(K,J) = .A(K,J) /PIVOT
00 55 I = 1,N --

IF(i-K) 45,55,45
45 PIVOT = NILO()

A(I,K) = 0.0
' DU 50 J = IR,M

5U . A(I,J) = A(I,J) PIVOT*A(KIJ)
55 CONTINUE

IR P 2*N
= N+1

Cu 60 I = IIN
JO 60 J = K,IR
M = J-N

6U X(I,M) = A(j,J)
RETURN
END

10g

O
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SUBROUTINE KPLOT

SUBROUTINE KPLOTIC,IROW,S,IR,IPI . .

C*****THIS SUBROUIIINE IS THE SAME AS IPLOT.EXCEPT TVAE IT SETS UP 3 AXES.
INTEGER PLANE(41,71),ICHR(20)
REM_ C(20,2) r-,
LATA IPLK,IX/"0.1/'
-DATA -ICHR/, 'Bt OC6,04D','F',I F', 1(719 'H19111 9'.15101 00 1,1M,,
1 'N',0',.P','Q',IR,,,S,,,T,/-

C***** S IS A SCALING FACTOR TO BE USED IF COORDIiATE> ARE ,OUT OF RANGE
C**;*** RANGE IS FROM -20 TO +20
C***** SET,/ IR = 0 TO BLANKOUT GRAPH FRAME
C***** SET. IR = 1 TO PUT'NEW GRAPH IN WITH PREVIO'IS uiE.,
C***** SET IP = 0 TO SUPPRESS PRINTING OF THE GRAPH
C***** SET IP = 1 TO PRINT THE GRALli
C***** NP = NUMBER FUR PRINTER.

AP = 5

IFIS 1.) 5,6,5
5 CO 7 I ='1,IROw

DO t J = 1,2
47 C(I,J) = Cli,J) * S

6 IF(IR)15,8,15
DO 10 I = 1,41
LO 10 J = 1,/1'

10 PLANEAI,JI = IBLK
'DO 20 J = 36,71,2

26) PLANE(21,J) = IX

J = 34
DO 25 I = 1,10
PLANE11+21,J) =' IX 4 '

25 J = J-2
00 30 I = 1, 20.

30 PLANE1,36)= IX
15 DC 40 K = 1,IROW

J = 36 + (5./3. * C(K,1) + .5)
IF(J) 40,-40,35

35 IF(J-71)36,36,40
36 = 21 (C(K,2) - .5)

IF(1) 40,40,37
37 IF(1-41)39,39,40.
39 PLANETI,;.1) = ICHR(K)
40 CONTINUE
C*****,RESTORE MATRIX C IF IT HASBCEN SCALED.

IF(S-1.) 42,43,42
42 SI = 1. /S

DO 44 I = 1,IROW
DU 44 J = 1,2

44 ="q(I,JA *SI
41 'IF(IP) 45,6ipp,45 .

45 DO 50 Kij="1141
50 wRITE(NP,-6.0) (PtitNEIK,J);J =r,71)
60 FORMAT(5X,,71A1)
65 RETURN 7

END ,
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STUDENT FORM 1

Request for Help

Return fo:
EDC/UMAP
55 Chapel St.

Newton, MA 02160

Student:. If you have trouble with a:sPecific part of this unit, please fill
out this form and take it'to your_instructor for assistance. The informAtion
you give will help the author to revise the unit.

Your Name

Page

0 upper

Domidole

0 LoWer

OR
Section

Paragraph

Description Of Difficulty! (Please be specific)

Unit No.

Exam

OR Problem No.
.

Text (-)

Problem No.

Instructor: Please indicate your resolution of the difficulty ii this box.

Corrected errors in.materials. List corrections here:,
,

(2) Gave student better explaiation, example, or procedure than in unit.
Give brief outline of your addition here:

(

(1-2)
Assisted student in acquiring general learning and.problem-solving,3
skills '(not using, examples .from this unit.)

-
a

G8
' Instructor's Signatu;e

Please userreverse if necessary.
41



Name

ti

Return to:
STUDENT FORM 2 EDC/UMAP

1
Unit Questionnaire 55 Chapel St.

$ewton, MA 02160

Institution

Unit No. Date

Course No.

Check the choice for each question that comes closest to your personal opinion.
.

1. How useful was the amount of detail in the unit?

Not enough detail to understand the unit
Unit would have been clearer with more detail .

Appropriate imount of detail
Unit wasoccasionally too detailed, but this was not distracting
Too much detail; I,was often distracted

001
.

.2. How helpful were the problem answers?

' Sample solutions wertoo brief; I could not do the intermediate steps
Sufficient information was,given to solve the problems
Sample solutions weretoo detailed; I didn't need them

3. Except for fulfilling the prerequisites, how much did you use other sources (for'
example, instructor, friends, or other books) in order to understand the unit?

A Lot Somewhat A Little Not at all

4. How long was this unit in comparison to the amount of time you generally spend on
a lesson (lecture and homework assignment) in atypical math or science course?

1.

Much . Somewhat About Somewhat Much
. -

_Longer Longer the Same Shorter Shorter

5. Were any of the-following parts of the unit confusing or distracting/ (Check
as many as apply.)

Prerequisites .

.../ Statement ofskills and concepts.(objectives)
Paragraph headings 01-

Examples
SpecialAsdistance Supplement *(if,present)
Other, ,please explain

6. Were any of the following parts of the unit particularly helpful? (Check as many
as apply.) .

. Prerequisites
Statetent of skills anaiconcepts (objeCtives) '

EXamples. '
----Problems

Paragraph hpadini
Table ofContents-
Special Assistance Supplement (if present)
Other, please explain

,
,

Please describe anything in the unit that you did not particularly like.

Please describe anything that nu found particularly helpful. (Please use the back of

this sheet if ,you need more apace.).
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1. ELECTRICAL CIRCUITS (11I08)

1.10, Introduction

You may be atate that matrix methods play an important
part in solving systems of linear equations: We will
examine a few aspects of this problem which are treated
more completely elsewhere,' We turn our attention to the
way in which a system of'equations might arisg,froM a

simple problem in physics dealing with an electrical
circuit,

a t
Most people have a general notion of what is meant

by an electrical current flowing in a wire. The, flow

of electrons in a wire is somewhat like the flow of
water in a pipe. To produce a flow of current, some

source of power is needed, such as a battery: There is

also a part of a circuit which consumes power. This is
a resistance. Current is measured in aOceres, the source
of power in volts and resistance in ohms.

1.2 Laws for Electrical Circuits

In studying circuits we will use'three laws. We

first state the laws, ihen.show how they at applied.

1. The sum of allIgkrents flowing to a

point equals the sum of the currents

floWing away from the pOint.

2. The algebrafc'sum of the voltage drops

around any loop of a circuit is zero.

3. The voltage drop between two points of

a circuit' algebraically equals the

prOduct of the current and the resist-

ance between the point4.

'To illubtratethese laws we use the circuit shown
in Figure 1. The symbol--------represents a resistance.

73
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A
10 amps

A

NV i

e
1

>10/VNIN
3 ohM's

5 ohms

3÷j\AAAN
e
2

Figure 1.

B

Ten amperes of current are flowing Iffto point A;

therefore 10 amperes must be flowing away from point A.
If i

1
and i

2 irepresent the currents in the upper and lower
,

branches of the circuit, respectively, then

i
1

+ i
2

= tO. (1.0)

Across the resistor in the top branch there is a

voltage drop, which we will label el. The third law tells

us how to calculate this voltage drop from the values of

the resistance and the current:

Cl = 3i
1'

Similarly, in the bottom branch

e
2

= Si
2'

Finally, we note the opposite directions of the current

at point B and apply the second law, to obtain the

equation

3i
1

- Si
2

= 0. (2.0)

1.3 Solving Linear Systems Using an Inverse Matrix

To find i
1

and i
2 in the circuit shown in Figure

1, we now have the system of equations

(1)

O

i
1

+ i
2

= 10

3i
1

- Si 2 = 0

74
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- .

which can be solved easily by slAbstitution. The iblution,
, -

can also be expiessed in terms of matrices. The matzix,,

of coefficients of the system in (1) is

1 1

A =.

3 -5

If we write the unknown values as the column vedlon
7

,

X = it

i2

likpsand the constants on the right hand side of the equations as

vs,

10
14.

' B = 01,

.

.

.

,

then the system of equations can be written as

(2) AX =41.

1.

One way to solve for X is to multiply both'sides of

Equation (2) by-the inverse matrix A-1,6to obtain

A AX = A
-1

B

IX = A
-1

B

X = A
-1

B.

The matrix I in this calculation is the identity matri

Sinceihe inverse .of A in our particular case is

5 1

R R

we have

i2

A
-1

= X = A
-1

B =

3 -1

24fl

R R 0
3 '21 15

3

Y,)



From thiswe conclude that

25 . 15ti T amps and i2 = 11- amps.

1.4 Consistent and Inconsistent Systems of Linear

Equations

A system of linear equations is said to be consistent

if there is at least one solution for the system. An

inconsistent system has no solution. To illustrate this

geometrically for a system of two linear equations in two

variables, we may represent each equation by a straight
line, as in Figure 2.

1.5 Existence Theorems

There are theorems 'about systems of linear equations,

called existence theorems, that allow us to determine

whether a system has no solution, a unique solution, or

an infinite number of solutions. As you continue your

study of linear algebra, you will learn about thesS

theorems,and their proofs. Program 5 in Appendix A applies

these theorems to systems of linear Actuations. You can

use this Aogram to .investigate the nature of the systems

with which you work even though you have not studied the
theory.

F
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A. Consistent, one point in common,
unique solution.

X

B. Consistent, all points ip common,
infinite number of solutions (L

1
and L

2*
are two names for the same

.

line).

C. Inconsistent, no points in common,
no solution (LI and.L

2
are parallel).

Figure 2.
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1.6 An Example
'

Let us apply the three laws for electrical circuits

to the following circuit.

Figure 3.

0

Using Law 1 we have the following:

A
For points: A i

1
+i = 8

Using Law 2 we have:

FO loops:.0

A ,
.

B
i2 + i3 it

#

C
'1.'3 + i4'= is

D
1:2 + is i6.

...

P

. IR

ABC

BCD

ABCD

6i1 + 2i3

91:2
7i5

6i1 + 9i2 - 7.1,5

--3i4 =

21:3

- 3i4 =

0

0

0

io

We can arrange these equations in the form AX = B.

Since we have fife variables \and seven equdtions the
system seems,to be over-determined. A system of equations

.'is said to be over - determined when the number of equations

1

, 0

: t
e
n Y 6

If

r, '

d

.



is larger than he number of variables involved in the

equations. It is possible to m4ce substitutions which

eliminate two of the equations. Howeirer, it is-mot

necessary to do this. In many practical problems,

systems Of equations which are derived from physical

situations may consist of 50 or even 10A or More

equations. One Of the benefits of matrix theory is

that we can use it to find out whether an over - determined

systein is consistent, aaewhet14r or not the,system has

a unique solution.

1.7 Experiment I

Consider the system

2x+ y- z= S
x - 4y ,= 3

Sx- 2y - 2z =113'

6x - Sy - 3z = 1

Is the system consistent? Is there a unique solution?

1.8 Model Exam for Unit 108

1. A system,of equations which has more equations than unkno1

variables is called'

2. If a system of equations has two equations and two unlaiowns,

the system is if the graphs of the

equations intersect, the system is

if the graphs are identical, and the system is

if tk graphs do not intersect.

Consistent systems may or may not have

solutions.
-

4. Find the values of il, i2, and i3 for the electrical circuit

on the following page.

7

4.

79



Figure for Model Exam Problem 4.

S. Use Program 5 to investigate the nature of the solution, if

it exists, for the following system:*

2x y+ 3z + w=

x + 4y - z + 2w = 4

Sr + 2y + Sz + 4w = 0

Note that this is an "under-determined" system in the sense

that it has more unknowns than equations, but it is still

possible-to investigate it With our program.
o

'8

8
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2. APPLICATIONS OF' MATRIX METHODS:

ANALYSIS OF LINEAR CIRCUITS (U112)

2.1 Inttoduc ion

In Unit 10 on electrical circuits, we considered
how a systeiro 'linear equations could be used to

represent some o 4therelationships in an electrical

circuit. Such a system of equations useful in linear ,

circuit analysis.*',We then explored the use ofmatItix

methods to solve sys.tems.ofxaqua.tions, which,' in sorne,

cases., were over-determintd. We also referred\to the

fact that systems of equations canbe -consistent or in-

consistent, and can Vave,a unique solution, an infinite
number of solutions, or no solution. We.now explore aa ;simple method to solVp such systems!

2:2 Elementary Row OpA rations

We Are interested in.the following three. types of

elementary row operations which may b perf med on a
matrix:

1. the interchange of any, two distinct rows;'.

Z. the multiplication of any row by a *zero.
1scalar;
:

3. the addition of a scalar multiple of.One rlp

Of a matrix-to, some other, ow of the fame '4

matrix.

If you think of ordinary linear equations,".these are the
usual ways in which you manipulate them.

*A linear circuit far a direct current is one containing
elementtithat obey Ohm's Law, such as metallic conductors. Ohm's
Law was given as eke third law of electrical cirtuits on page 1!
There are many devices in electronics that do not obey Ohm's Law. -

TIMy are Called "nonlinear,"

4

81
A
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3

2.3 Exercises Using El:imntary Row Operations

1. Which elementary row operation transforms

2

2. Transform
.

.!' -11 7

to

.

to
e

;
0

...

1.

tc

17

'

%...0

1

(c,

.

4

if possible. ,

.,

.

2.4 Row Equivalence
. eft4 :

.-

IA matrix is said to be ro4!,;quivq.ent to another

matrix if the firsts matrix can be transformed into the

second by a sequenCe of elelentary row operations. _For

example, inthe exercises in Section 2,3 the matrii

.

[2 -1 .

1 ,is row evivaleAt to

_ .

1 and the matrix
,'.

[12 -17 e

rl
ri 0

7

is row equivalent to
. ,

. to 1 .

Why we are interested in.yow equivalence will be

eviient,in the discussion which follotis.- We will see

that a transformation of a, matrix of Coefficients of a

system of linear eqUations which leads to a partidUlar

row equivalent matrix is a mean's of 'obtaining solutions

for the system of equations,:if they exist: or in I s , . .
,

determining that the system is inCOnsiStent. ,

, --
, .

2.5 Row Echelon Matrices
, -

_

If you look up the term. echelon in a0dict.idaary,'you

will find that it refeis to a-forMation, often used for

at .

4,:r .

82
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airplanes'or ships, in which there i s a lead plane or .

vessel with the others 'arranged in step-like fashion

slightly to the right or left and to the rear. We use

the term echeion,here to refer to matrices of a form

that, in a way, suggests the meaning of the term as just

given. More preisely, we define a matrix to be in

row.tcheJon form if it has the follely.ing properties:

.1 in any rep/ of the'mitrix the first nonzero

elemenct,at the left must be a 1 unless the

row consists of all zeros;

rows of all zeros should follow nonzero 'rows;

3. the column containing the leading {i.e., the

leftmost) 1 has zeros elsewhere' in the column;

4. the leading 1 of any nonzero TOW must appear

,- ..to the left of the leading 1.of the nonzero row

that follows it.
The- following examples should help to clarify this

/. idea:

,

[2

2. 1

1

0

3. 1

0

0A

4. 1

0

0',

0

1

0

0

0

0

0

0

0

0

1

2

.

,

21

0

0

2

0

0

,

0

.1

0

0

1

3

2

0
O

's

'(echelon form)
1 0

'(not in echelon form)

(echelon .form)

(not in echelon form).

I 0.

4.

83



2.6 Using Row Echelon Form to Solve Systems of Equations

4
For a given system of linear equations, the

coefficients of the variables and the constant terms

can be represented as two matrices. F.or example:

If we write the matrices V and C as one matrix, by

writing the constants as a new column on the right:

El
t

and transform this augmented mitrixto echelon form, we

can ind'Ae solution of the otigindl system of linear

equations represented by V and C, if the solution exists.

Further, ,this method will expose inconsistent systems,

and systems with many solutions. We will demonstrate

this with an-example. For the above ,system

1 1S 1.

multip1y rctW' 1 by 1,,

5
-3

multiply row 1 by -a, and add to row 2

1

7F
17

3

-18
1

to

s. (.4

5-*

^ e
A

4

.1

46..



Multiply row 2 by

4 3

1/4 36,

1 -1-,r

multiply

echelon form

3 t
'row 2 by 7 and add to row 1 to achieve row

1 0

0 1
36

The solution for this system can be read from ,the

row echelon form as

X =

and

36
Y -17'

From this problem we can seq thattransforming a
,

.matrix ofcoefficients to row echelon form, and at thei

.1.0. same time applying therow operations to the'augmented
.

, matrix of coefficients and constants can produce-the
d .

i

sqlution` to, the system, if ite4ist ...s.. ]'p

2.7 Exampl sand Exercises
i.

. . 1 .

Use the method of transfoloning the augmented matrix to. row

echelon form to solve each of these systems, if possible. State
t'

whether or not the system is inconsistent: The first example shows

how thi, can be detected.

a. x- y - 2; = 3

ZX 3y,+ a = 1

4'xt'y -3a =5

4

7
Vi 13



h.

41%

The° answer is 1 0 -1

0 1 1

o b 0

-1

-2 .

This system is inconsistent. Look.at row 3. There is no

value of s, y, or z such that 0 = -2.

b. s+ 2y- z .4

/-x - y + 2z = -S

4s + 11y - z = 14

c. 3,x + + z =

Zx + Sy + 4z =

x-+ 4y +. 6z = 4 e o

d. + y + z = .3

x y - z = -4

az + y +z = 2

Answer: 1 0 0

0 1 1

0 0 0

0 A

2

2-

0

4.

1
From the first row s = -7, and from the second row y +.z =

The third rrindicates that 0 = 0. This system is consistent, but

there is no otunique solution. We can, however, find a particular

solution if we assign some value to y or 2. For example, let z = k,

7 0

then y47 7 -,k. For k = 1, y =
2.

.

ril this case, the system is consistent kuthas aninfinite
. .

.
number c4 solutions. We refer to such systems as consistent systems

with paraet6re. Inethe,exaMple above k is a petrcMgter. A system

may have'mord than one parameter. 4%

. .'

14
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-4,

e. x - y Does this gyiteM have a parameter? Why?

2x + y =
°F

3x y = 3

f. x - 2y = -2

x - y =

2x + y = S

g, x + 4z = S

y + z = S

2x + y + 17z = 13

' h. , x + 3y - z = 4

2x- y + 2z = 3

4111i:± 2y + z = 7

2.8 Electric Circuits Revisited

In Unit 108 we used matrices to analy e an electric

circuit.' The program is quite adequate for even a large

system. However, at the time, westarted by formulating

°equations based on the laws of circuits and then

constructed a matrix from this gyStem. Pf a system ig

more complicated, this may be a nontrival task.

It is possible to formulate the electric circuit
4

problem in terms of matrices from the beginning without

'writing the equations. This will be illustrated in'the

4

4

;
A,

s

following example.

.2.9 An Example.of an Electrical Circuit

Before we start the examp16, it is necessary to

disCuss, briefly; network branches and sign convention'.

Each branch of a netWork-In an electrical circuit can be

represented as shown'in Figure 1.

, 1#

8"

15

iJ
;



it

i
r

a

+.. --- -_ 41-
,

I

I
i . I

r

Figure 1.

4

The voltage drop across the branch is given by
'vr, - er, where e

r is an electromotive force in series
with v

r
. Figure 1 shows the sign conventions used for

a branch.

Figure 2 shows an example of an electrical circuit
ulnrthe conventions illustrated in Figure 4i.

AVb

a.. .

8814

s

I

: J

16

"a 4

"- T .

a

4

r
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Each branch is connected to the rest of the network

at precisely two points, or nodes. We number these nodes

in Figure 2, aibiti-arily,'from 0 to,4-. We aie interested

in only the voltage drop across a branch,, that is,

differences such as,V2 V3 which is .equal to 'v2 - ea,

4 so.me can set the voltage at one arbitrarily selected

node equal to O. We choose V0 = O.

From the laws previously stated in Unit 108, the

net current at each node must be zero, and we can write
o

the equati or this circuit as

i5 i6

II
o til + i3 +,i4

12 = i, 2- is is

1
i2

i4 i6

% HOWever, instead of writing the1se equations, especially

if the system is laige aM complicated,'we can construct

the matrix S which preserves Vile signs of the system.

This matrix can be constructed directly from the' diagram

without the tecessit of writjng the equations.

0
it

i2 5 i6

e
I1 1 0 1 1 0 0

- S = I
2

0 1. -1 0

1
3

-1 0 -1 0 -1

89 a
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Verify that the equations' could be obtained from
.the product

where

J - Si

=

1:6

From the ..i.,agram in Figure 2,we can construct the

7
I
1

V
1

V2 J '12

V3 1
3

V =

Since the law of electric
6

e
1

v 2 e
2

v
3

e
3

e =
v
4

e.14

5 fs

u-- if6

circuits

v Ri

ry
holds for.tlie voltage drop across each resistor in the
circuit shown in

4
Figure 2, we have' c

v
n n n'

='R i n = 1, 2, ..., 6,

90 .

18



or, in matrix notation,
-

V R
1

0 0 0 0 0
1

V
2

0, R
2

0 0 0 0 i
2

V
3

0 0 R
3

0 0 0 i
3

V4. 0 0 0 R4 0 Q i
4

V5 0 0 0 . '0 R5 0 i
s

V
6

0 0 0 0' 0 R.6 i
6

Satisfy yourself that this equation holds.

4N11 our' information is now organized in the matrices

S, i, V, J,v% e, and R.
--

From the laws of electrical circuits the followini

relationships are true:

v = Ri

S V = v -

(2.1)

(2.2) where T indicates the
transpose

J = Si (2.3)

where all the variables in Equations 2.1, 2.2, and 2.3

represent the matrices constructed nboire.

2.10 Experiment I
4

Using Figure 3 construct he matrices S and R for this

system.. Let J 0 and solve for Or.

ti

. 1.

S.

91
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V =
0 ,

S

t.eap-
Figure 3.

The values for the e's not shown are all zero.

2.11 Model Exam foc,Unit 112

1. Transform this matrix' to row echelon form'

1

0

-[1
r°

1
,

, -3

-1

2

° . ,

Solve this system of linear equations, if possible?...
,

x- y +.11z = 2
.

IX + 2y 22°= 2

3x.+ g sV.,f1

x Sy - 3z ='=1.

Is the system in Problem 2 consistent? Does it have

pardmeters?

'

O

I

92
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4. Create the necessary matrices for the analysis of the

electrical circuit in Figure 4 such that the formula

SR
-1 T

V = J - SR
-1
e can be used, Do not solve the system.

a.'

R
2

V R6 V
4

Or

44. *figure 4.

93
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3, ANSWERS TO MODEL EXAM (UNIT 108)

1. Over-determined.

2. Consistent, consistent, inconsistent.

3. Unique.

4. N . 4, M = 3:

AUGAENiED MATRIX

1.00 1.00 1.00' 30.00

' 1.00 -5.00.° 0.00 0.00

0.00 5200 t-2.00 0.00

1.00 0.09 -2.00 0.00

UNIQUE'SOLUTION VECTOR X IS

X(1) = 17.64

X(2) = 3.52

X(3) = 8.82

S. N = 3, M = 4.

AUGMENTEDrMATRIX

V s

2.00 -LT 3.00 1.00 1.00

1.60 4.60 -1.90 2.00. 4.00

5.00 2.00 5.00 4.00 9.00

EQUATIONS ARE INCONSISTENT.

4. ANSWERS TO SOME EXERCISES FROM UNIT.112

Exercises from Section2.3:

The multiplication of row 1 by a -2 and addition of the

results to row 2 will transform

6
4

to

2 0 -17

p \ 94

1

40'

22



4

To transform

[!

_i1

1 j

multiply row 1 b57 4

I
Multiply row 1 by l and

add the results to row 2

multiply irow 2 by
1

2

miati 7
1

ply row 2 by and
t

`add the results to row 1

to

1

ri 0

1 7

5. ANSWERS TO MODEL

1.
1. The row echelon form is:

o.

4

EXAM (UNIT 112)

0

0 1 -1

'0 0 0

'2-3. Using Program 9 we get the follbwing result:

ROW ECHELON FORM
0

1.0000 0.006 2.'0000 1.5000

o.0000 (.0000 -1.0000 - 0.5000

o.0000
o

fo,0000 0.0000 'o.00do

0.0000 l'o.0000 0.0000 0.0000

From the row echelon form we cap see that the system is

consistent, IAA that it has parameters.

9

ir

I. 23

J
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4.

r

ID

A 7

Using Program S we can find particular solutions. You

might want to discuss this result -in class,

PARTICULAR SOLUTION VECTOR IS

X(1) = 0.00

X(2) = 0..24

X(3) = 0.75

LINEAR INDEPENDENT VECTORS ARE

U(1) to U(1)

-1.00.

0.50 ,

' 0.49

1.1

i
2 V1

i
3

V
2

V =i =
24 V3

i
5

V
4

6

s!k'

S

-r
O.,

0

A

0

-1

0

0

'o
1

-1.

0

o

.0

1

-1

4
ancrs:J = Si.

.

96
o

R
1

0 0

0 R
2

0

0/ 0 R
3

0 0 0 R
4

0 0 0 0

LO 0 0

-1 0

0 0

1.

ti

e

0

0

0

10

0 0

0 0

0 0

0 0

R5 0

'I



PROGRAM 5

APPENDIX A

;

INTEGER'HEAD (46)

DIMENSION AA(10,10),BB(10),X(10),U(10,10)
C****READ ONE LINE HEADING WITH SYUDENT NAME
C**** A /; TERMINATES THE RUN
100 READ(2,20,END=50) HEAD-
20 FORMAT(40A2)

WRITE(5,21) HEAD
21 FORMAT(1H1;5X,40A2//)
C****READ THE DIMENSIONS OF THE SYSTEM

READ(2,1C) N,M
,10. FORMAT(215)

WRITE(5,33) N,M
33 FORMAT(5X,'N = = !,I3//)

WR1TE45,34)
34 FORMAT(5X'AUGMENTED MATRIX'/)

',100 1 I = 1,N.

C****READ THE COEFFICIENTS AND CONSTANTS
C****THESE ARE PUNCHED IN FIVE COLUMNS EACH WITH A1DECIMAL POINT.
C****CHANGE THIS PROGRAM IF THIS FORMAT IS NOT SATISFACTORY
C****THIS IS A SHORT CALLING PROGRAM AND CAN BE ADJUSTED EASILY

READ(2,2) (AA(I,J),J=1,M),BB(I)
2 FORMAT(11F5.0)

WRITE(5,35) (AA(I,J),J= 1,M),BB(I)
35 FORMAT(5X,11F10.2)
1 CONTINUE

CALL SOLEQ(AA,N,M,BB,X,K,U)
IF(K)100,41,42

41 WRITE(55)
5 ,,FORMAT(//5X,'UNI.QUE SOLUTION VECTOR X IS'/)

GO TO 36
42 WRITE(5,43)
43 FORMAT( / /5X,'PARTICULAR SOLUTION VECTOR IS'/)
36 DO 32 I = 1,M

WRITE(5,31) I, X(I)
31 FORMAT(5X,'(XI,I3,1) = 'iF8.2)
32 CONTINUE '

IF(K)100,10'0,40
4O WRITE(5,6)
6- FORMAT(//5XILINEARLY INDEPENDENT VECTORS ARE'/)

WRITE(5,7).K
7 FORMAT(5X'U(1) TO UCI2,Ti)

' DO 4 I = 1,M
4 WRITE(.6,3) (U(10),J=1,K)
3 FORMAT(5X,10F8.2)

0

GO TO 100
50 CALL EXIT

END

" 9 7',

25



"
\

PROGRAM 9

C***** PROGRAM 9 APPLICATIONS OF MATRIX METHODS
DIMENSION AA(20,20),IHEAD(40),A(20,20)
NR = 2
NP = 5

5 READ(NR,10,END=60) IHEAD
10 FORMAT(40A2)

i'IWRITE(NP,20) IHEAD
20 FORMAT(1H1,40A2//)

WRITE(NP,25)
25 FORMAT(5X,'INPUT DATA',//)

READ(NR,30) NROW,NCOL
30 FORMAT(2I5)

WRITE(NP,21) NROW, NCOL 1

21 FORMAT(5X,!ROWS = ',I3,50 COLUMNS = ',I3,//)
NCOL = NCOL + 1
DO 40 I =,1,NROW

READ(NR,35) (AA(I,J),J. = 1,NCOL)
35 FORMAT(10F5.0),

WRITE(NP,45) (AA(I,J)J = 1,NCOL)
40 CONTINUE

CALL ECHEL(AA,A,NROW,NCOL)
WRITE(NP,41)

41 FORMAT(//5X,'ROW ECHELON FORM'//)
DO 50 I =

WRITE(NP,45) (A(I,J)01=1,RCOL)
45 FORMAT(5X,10F10,4)
50 CONTINUE

GO TO 5
60 CALL EXIT

END

X

J

41.

't

°8

4

O
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SUBROUTINE ECHEL

-...,!LIST ALL
40NE WORD INTEGERS

C***** RETURNS ROW ECHELON FORM OF A MATRIX.
SUBROUTINE ECHEL(A,AK,NROW,NCOL)
DIMENSION A(20,20). AK(20,20)
DO 101 = 1 ,NROW
DO 10 J = 1,NCOL

10 AMI,J) = A(I,J)
_4( = 1

NC = NCOL - 1
C***** RETURN IF COEFFICIENT MATRIX ROWS REMAINING ARE ALL ZEROS
15 DO 20 I = K,NROW

DO 20 J = 1,NC
IF(AK(I,J) )30,20,30

20 CONTINUE
RETURN

C***** FIND THE FIRST NONZERO COLUMN ENTRY
30 DO 40 J = K,NC

DO 40 I = K,NROW
IFTAK(I,J))50,40,50

40 CONTINUE
50 IC =J

IR = I
DO 55 J = 1,NCOL

. C = AK(IR,J)
\AK(IR,J) = AK(K,J)

55 "Ak();01) =,C
X .=:...,W(K,IC)
DO 60.;`0 IC,NCOL
AK(K,J) = AK(KA)/X

60 CONTINUE'
00.70 If 1,NRoW
IF(I-K) 65,70,66

65 'D = AK(I,IC)
DO 67 J = IC,NCOL
W= AK(K,J) * D ,
AK(I,J) = AK(I,J) - W .

LF(ABS(A(C(I;J)) - .0001*ABS(W))66,67,67
66 AK(I,J) = 0.0

067 CONTINUE
70; GLNTINUE
C***** RETURN IF LAST ROW HAS BEEN PROCESSED.

IF(K - NROW)80,75,75
75 RETURN
80 K = K + 1 r'

"GO TO 15
END

.s.
27
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SUBROUTINE SOLEQ

*LIST ALL
** NUMERICAL ANALYSIS SUBROUTINE SOLEQ

SUBROUTINE SOLEQ(AA %NI,M,BB,X,K,U)
DIMENSION' AA(10,10 ) ,BB(10),A(10,11) ,X(10)
N=NI
MM=M+1

.00 200 I =1,N
A(I,MM)=BB(I)
DO 200 J=1',M

200 A(I,J)=AA(I,J)
K=.1

IF(N-M)15,1,1

,10(10),U(10,10)

15 IT=N+1
N=M

DO 16.I =IT,M
DO 16 J=1,,1'9'1

16 A(I,J)=0
1 CONTINUE

DO 21 I= 1,M
21 ID(I)=I
2 CONTINUE

KK=K+1`
. IS=K

IT=K 111

B=ABS(A(K,K)),
DO3 I=K,N .'DO 3 J=K,M
IFIABS(AcI,J))-03,3,31

31

IT =J
B=ABS(A(I,J))

3 CONTINUE

IF(IS-K)4,4,41 \
41 A, DO 42 J=K,M14

C= A(IS,J)
A(IS,J)=A(K,J)

42 A(K,J)=C
r4 CONTINUE

IF(IT-K)5,5,51
51 IC=ID(K)

ID(K)=ID(IT)
ID(IT)=IC .

DO 52I=1,,N
C= A(I,1T)
A( I ,IT)=A(I,K)

5 2

5 CONTINUE

IF(A(K,K))71,61,71
61 KK=K

K=,K71
DO 62 J=KK,M

62 A(J,J)=-1

71
GO TO 6
IF(K-N)81,72,120

28
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SUBROUTINE SOLECOCont.)

t

v(

72

81

82
8

22

6

73

A(N,MM)=A(N,MM)/A(N,N)
GO TO 7
DO 8 J=KK,MM-
A(K,J)=A(K,J)/A(K,K)
DO 8 1=K1C,N

W=A(I,K)*A(K,J)
A(I,J)=A(I,J)-W
IF(ABStA(I,J))-.0001*ABS(W))42,8,8-
A(I,J)=0.
CONTINUE
IF(K-M)22,6,120

K=KK ,*

GO TO 2
CONTINUE
DO 73 I=KK,N
IF(A(1,MM))120,73,120
CONTINUE,
CONTINUE
Kj-1K-1'

DOWS=1,K1
I =K -'IS

1

V

11=1+1

DO 91T=II,K
DO 9J=KK,MM
A(1,J)=A(I;J)-A(1,1T)*A(IT,J)

9 /CONTINUE
D010I=1,0
D010.1.11,M V
IF(ID(J),I)10,111,10

111 X(IY=A(J,MM)
11 CONTINUE

IF(K-M)101,10,101'

. 101 DO 102 1S=KK,M
ISUB=IS-K

102 U(I,ISUB)= A(J,IS)

10 CONTINUE
K=M-K

. RETURN f =

126 K =.-1

WRITE(5,1000)
1 . KIURN
'1000- FORMAT(?7N EQUATION5'ARE INCONSISTENT)"

END

7

;

29
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1. Obtaining Formulas

:2. Practi e Finding Deriv atives

Appendix 1. T e Tangent Method for Estimating Derivatives

Appendix 2. Rat5s_of Change

Appendix3. Di'fferentiation.Formulas from Calculus

Appendix 4. Derivatives oLTriganOthetric Functions

V: ANAERS TO MODEL EXAMS
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Evansville, Indiana 47 2

Review Stage/Date: 1.11 '2/2/79

Classlffcation: DERIV TRIG FNCTNS

Suggested Support Material: '

Description: This module is introduced by Unit 158, which presents
four challenge problems. The three units, that follow are
designe to provide the skill and understanding to work these

\I
problems. In Unit 159 we approximat the derivatives of
y = sinx and y = cos x at various x- lues, using osometric
and numerical methods. This leads to conjectures abot the
',derivatives. In Unit 160, the conjectures are validates and'
applied. Unit 161 then develops formulas for the derivatives --
of the other trigonometiic functions and providls practie
in their application.

.

Prerequisite Skills:
,

.t

1. Know the definitions of the trigonometric fdnctions.
2. Be familiar with radian measure far angles.
3. Be acquainted with the fundamental trigonometric identities,

including to double angle pumulas. N,
4. Be able to draw and to recognize the graphs of simple expres-

sions in which trigonmetric functions appear.
5. Know the chain rule for differentiation 'and the rules for

differentiating sums, products, and quotients.
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Output Skills:
Unit 158

1. Qe able to identify problems that involve calculus applied
to trigonometric functions.

1
2. Be able to describe a problem that involves'the calculus of

trigonometric functions. P
Unit 15

d,I. ow what units x must be fin to make 5F (sin x) =,cos x and
d

(cos x) = -sinx true. 4dx

2. Be able to estimate the values of the the derivatives of
y = sinx or y = cos x for any given x value,,where radian
measure is used. , ,

Unit 160
Al. Know that (sin x)'= cosh because lim

sin h'
= 1 anddx \

d

4+0
h

cos h-1lim -- = O. ,,,

h
h-0

N : 2. Know why gem
sin h..13

11-41 h

1 0 4.

3. Know,that when x is measured in degrees (sinx)

cos x (4--) and (cos x) = -sin x100 dx lou
4. Be able to differentiate and antidifferentiate simple

functions expressed in terms of sines end cosines.
5. Be able to solve the challenge problems of Unit 158, referring(

to the discussion when necessary.
Unit 161

1. Know differentiation formulas' for all six trigonometric
functions. .

2. Given the derivatives of sin x and cos x , be able to derive
the derivatives of the other four trigonometric functions.

3,1LIte able to differentiate simple expressions involving sums,
products and quotients of trivonometric'functions.

Other Related Unfits:
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UNIT'158: CHALLENGE PROBLEMS

(

1. CHALLENGE PROBLEMS 1

t-

1.1 Introduction

1.2. Out Fishing
;

1.3 Putter/ Gutters

1.4 Average Power

1.5 Pulling a Box

2. MODEL EXAM

3. ANSWERS TO MODEL EXAM
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1. CHALLENGE PROBLEMS

U158

' . 1.1 Introduction

You have used calculus to solve problems that would

have been either impossible or much more difficult

.withott calculus.. Inthe problems posed here you will,

find that calculus will lead to the solution, but
_.

that' calculus must be applied to trigonometric functions.

Read through each problem carefulj.y.. Decide .

which concepts and procedures from calculus are needed

to solve eae4 problem. Then, after your study of
I...

differentiAtion and integration_applied to trigono-

metric functions inlinit 159 - Unit 161, you should .\

be able to find the 'solutions to the problems.

1.2 Out Fishing

Jack Jukes is out fishing on a spring.afternoon.
. -

First, there is no wind and his cork is perfectly

still in the water. Later in the afternoon a wind

comes up causing the cork to bob up, and down.
1

From his physics course of the previous semester

Jack knows that the vertical position of the cork
...

plotted as a function'of time will be a sine curve. 1.
The gr4of the position of Jack's cork with respect

to time is shown in-Figure 1.

(Note: If there were no wind, the positidn of

/the cork would remain stationary At y'L O'ai t increased.

Also, t = 0 is exactly 2:00:00 p.m.) With all this

information magically at his disposal Sack asks him-

self, "Whdt is the position of my cork and how fast

is its position changing at 11 second and at 11/2 seconds

after 2:00:00 p.m.? Also, at what point during the

first 2 seconds is my cork falling fastest?"

108
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Figure 1. Graph of the position of Jack's cork.

t (sec)

1.3 putter Gutters

The Putter Gutter Cothpany is planning to make gutters

from 14-inch strips 'of galvanized steel. They are to be

designed as shown in Figure 2.

1"

4"

Figure 2. Section of gutter.

As illustrated, one inch on the outside edge will be

used for the lip and one inch on the inside edge will be
. ,

used for securing the gutter to a building.. It is also

desired that the total length of the side against the

building be five inches and that the bottom be perpendicular

to the side against the building as shown. The final

,109
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.cono.deration is ts deiign the gutter such that it will

'hold the most water p0sible when filled to a depth of

four inches. The ciVestions. that need to be answered are,

"Where should thg beh4 between the bottom and outer side

be?" and "What will the angle that the outer side i to

be bent, up (angle 6 in the illustration) be?"

1.4- Average- Power

Electrical power, measured in watts, is the product

of the impreised voltage and the TOsulting' current in

amperes.' Ve have 4
o

p(o.ta:tts) .= v(volts) x i (amperes) .

I

When resistance is nieasure
i

in ohms, we alio have

..,.,i (amperes) =
v(vol

i

age)
,R(ohms)

When the voltage for alternating current (AC) is

graphed, with restea to time, the result is a sine curve.

Suppose AC voltage is given by the equation, -
t,- rzv : 17.0 sin t,.

,..,
where t is in microseconds, ' e.

Also, ,suppose the resistance in a circuit is 17 ohms,

then
170 sin -f,2. t* '

,

4 i
17

10 sin f,2 t.

Now the equation for power is
to

. p = (170'sin 7-,r t) (10 siit?,- t) ,
s .

where p is in watts:
170 V .

(volts)

Figure 3, Graph of v = 170 sin t.
12

Nfi

t(micro sec)

3

U158

t

(micro sec)
12 18 24

Figure 4. Graph

°
p (power)1700'

10 sin
12

t .

6 12

Figure 5. Graph of p = 1700 sine t.

S

t

18 24 (micro sec)

4
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The average power P, where p is.a periodic function

of time t with period T, is defined as follows:

(average power) 1P=
0

p dt.

What is'thp average power where = 1700 sid2/12 t?
. What is the geometric interpretation of P?

1.5 Pulling aBox

- Jason Baxter and Sam Jones are having- an argument

concerning pulling a heavy box across a long- room.

They have a rope tied to the box and Sam says, "We

should pull parallelto the floor.": Jason says

"It is better to pull at an angle."

Figure 6a.''',Sam's Proposals. Figure 6b.' laCOb's Proposal.

od
Figure 6. Proposed pulling angles.

You are called in to settle the argument. You begin

by recalling your recent physics course. First, you

recall "coefficient of friction." Friction br resistance

varies for.,different surfaces. If it requires a force of

_magnitude F kg directed paralled to a horizontal surface ''

to pull an objeCt of weight ,W kg steadily across the sur-

face, then the coefficient of friction K is the ratio_of

F to W. That is,

K' = FT
F

For example, If a horizontal force of 6kg will move

a box weighing 45 kg steadily across tide floor, then the

coefficient of friction between the box and the floor is

112 5

K =
45

.133.
kg

W = 45 Kg
F = 6 Kg

U158

Figure 7. The coefficient of friction is K = -r = 0.133.
45

In considering the problem you a sume the weight

is concentrated in,a single point and hen the force

is applied to an angle 0 as suggested by Jason,

Figure 8 illustrates the situation.

Fsin 0

.1 W (weight)
......

. .

Figure 8. Magnitudes of forces acting on box.

In this case, the upward component of the applied

"force nullifies part of the downward forceof the box,

giving (W - F sine) as our replacement for W in deter-

mining the coefficient of friction. Since the magnitude

of the applied force parallel to the floor is given

'by Fcos 0, this is our replacement for F to determine

6
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La
IA coefficient of friction. Thus, the coefficient of

'ction is

F cos 0K =
W - F sin 8

Solving this equation for F we obtain

KW
F A

K sin + cos e
kg-

Now-,-YOuilProblem is to find the value of 0
2. Suppose that the resultant so d from guitarthat minimizes F, and resolve the argument.

strings vibration has a voltage (V) given by

v = sin 2t - 2 sin (t + i). Wha is the maximum ,

voltage where 0 < t < i?

ft

1

2. MODEL EXAM

U158

Read each of the folowing,problem carefully

and decide whether calculus is needed to solve them.

1. The angle of elevation of the top of a televisiOn

tower from a point 1200 meters away is 0.3 radians.

What is the height of the tower?

11 4

7

3. Suppose that a 14" (diameter) pizza is cut

through the c.enter in sucha way that a parti-

cular piece forms an angle measuring 120°.

What is the area of this 'piece of pizza?

4. Suppose thaeowners of a store want to put a

tr'angular sign on top of their building which

is er .6 meters long. They want the sign to be

an isosceles triangle and have 6 meters of molding

to put around the 2 sides that -rrt above the

building. What should 0, the measure .of the

base angles, be to get a triangle of maximum

area?

building

5. Describe.a problem that involves the calculus

of trigonometric functions.

if
'
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UNIT 1'59: FORMULATING CONJECTURES ABOUT THE

DE,RIVATIVp OF y =,sinx AND y = cos x

1. TANGENT METHOD APPLIED TO y = sin x AND

U159

1..7TANGENT. METHOD APPLIED TO y = sin x- AND y = cos x

1.1 Tangents to y = sin x -

You May be familiar with the so-called Tangent

Method fox measuring the slope ofa line graphed in a

coordidate In this unit, we are going to usey = cos x plane'.
1 .

...

the method to measure the slopes of lines that are tangent

.

1.1 Tangents to y = sin x,t 1 to the curve y = sin x at various values of x. This will
, ...

1.2 Graphing the Derivative of y = sin x . . . 3 give us numerical information aboue'the'instanteneous rate
.

1'.3 Making a Guess 3
of changp of at these values of'x.

'

/ .

4
We recall from trigonometry that y =sin x, where. ,1.4 Tangents to y = cos.-x

.4f
y is the sine of the argle.whose radian measure is x,

1.5 Graphing the, Derivative of y
.

cosx 4 g
is a periodic function with a period, of 27. It then -

.,

1.6 Guessing Again 4 seems reasonable to consider x values such that

1/4

2. NUMERICALLY CALCULATING DERIVATIVES'FOR

y = sinx AND y = cosx ..... . . .

2.1 Introduction

2.,2 ExplainedIhe Procedure

2.3 Applying the Procedure

2.4 Using Degre'e Measure
t

MODEL EXAM .
.

.

ANSWERS TO MODEL EXAM

0 < x <-27. Let us try to pick x values at,approxi-_ _ 4

mately .5 unit intervals, recalling that the Z values

.

7 of 0, 7/2, 7; 3742, and 27 are of special signific;nce

, v 7 in graphing tri.gonometric functions. With these

5, . 7 cbnsiderations we chose th lueS"that appear in

Table'l. D.

8
... Notice in Figure 1 which is the graph of y =, sin x

11 that, each small subdivision represents 0.1 unit and that

16
each large subdivision represepts one.unit. It is

instructive to use a common reference point toacompare

17. . the slope of the tangent line to see h6w the slope

changts as x increases: Slide your triangle along

your stationary ruler (procedure is explained-in

Appendix 1) to translate from thr tangent to the

curve to a parallel_line through the.. point labeled

s

1.16

4.

. "A.to compute the value of the tangent for thex values

at

See Appendix 1. .1

1
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of 0, 0.5; 1, v/2, 2, 2,5,, W. v. Use the same procedure

.-to translate from the tangen lirie to a parallel line

throb 0 the point labeled B compute the value of the

tangent for x vat es of 4,.\7, 4.2,,31772. 5.2, 5.7, and

2v. Record your values to nearest 0.05 unit.

The work for x . 0 is done for you. Line Cis
tangent to y = sin,x-at x = 0. Line m is parallel to

X and contains point A. Lint m intersects the-vertical
line which is 1 unit to the right of point Al at-point .

P. (Since P is one unit above the horizontal line through

A, the slope of the tangent line is 1/1Aor 1.

Note: Although t tangent line X to thetcurve
at x = 0 is drawn in fo illuetrative purposes, it
advisable not to draw in other tangents. The many
lines May cause confusion.'

, V.
.

x 1.2 .Graphing Derivative of y = sin x
-,c

_
..'N .

. After omilleting Table I we will plot the points
n

>. with coordinates (x,y) Where each x is an x value from
.... toe table and the y value corresponding Vo each x iso

=a the slope of the tangent to y = Sin- x.. Plot these
I- points on the coordinate systed provided in Figure 2.0

.

/
The first point plotted will have coordAnates (0,1).

L , avuplotted th6 thirteen points using Table I,
(7) sketch a'qRgeth curve through (or very close to) all

..- these points. The' curve we-now haverie graph of
u.

...the rate of change in y = 'sin x. ;

.119-,1

,
, '1.3 Making a Guess ,,ar.., : ,,.

'-..

Let us hypothesize that tilis curye A also the -

graph of a trigonoTetriCitunction of X. Yju are'now
$.

asked, ';What is the,trigonometric function of form
1 y = f(x) whose graph thiscurve most closely approxi-

.
.

. mates ?" You may wish to refer to any trigonometry book 4
handl, to refresh your memory about the graphs of

trigonometric functions.'
_ . _

3 .

2
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. .

My guess is .

°,

Before proceeding further refer to page 13.

Hopefully,, your table and grap closely approximated

glthose on page 13 and you guessed th trigonometric

function that was given. If you missed some values byt

0:2 or more it is advisable to review the procedure in

Appendix 1, and try to do the exercise again.

1.4. Tangents to y = cos x

Let us use
Q

the Tangent Method again to1see if we r

, can guess the function of x hick-reprasents the rate

of change of.tyP= cos x.. Use the procedure 'yOu used
Aafor y = sin x to complete able II o p ge 62\ The work

)is again illustratlefor x =0.

\159

<
ar U159

1..5 Graphing the Derivative of y =cos x

With Table II comp,lete we will plot the thirteen

points with coordinafes (x, y)`where each x is an x

value, from the ,table and the y value corresponding to',

each-x value is theslope of the line tangent to \

y = cos x. Use- the coordinate axes (Figure 3onAagecY
to plot these points and sketch the curve.

1.6 Guessing Again

The question is again, "What is the trigonometric

"unction of the form y = f(x) whose graph this curvet

most closely approximates?"

My guess is

Refer to Pagel4 before proceeding.

120.

1
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2. NUMERICALLY CALCULATING DERIVATIVES FOR

y = sin x AND y = cos x

2... Introduction
C11

LA CV
a

Cs1 In.Section 1 we used the Tangent Method of Appendix
C11 ct LI;

1 to approximate the instantaneous rate of change of

y = sin x and y = cos x for various values of x. ,Then

for each function we plotted points P(x,y) where the

y value was the instantaneous rate of change of the

urinal function for the given x value. Next, we

sketched a smooth curve determined by the points for

each of the original functions. Recognizing that this

curve represented a funftion in each case, we guessed

an equation far this function. As you know, this new

derived function is -called the derivative of the ori-

ginal function. Thus, we are led to guess that the

derivative of y = sin x is y '= cos x (Notation:

ody/dx = cos.): when y = sin x) and the derivative of

y = cos x is y "= -sin x (Notation: dy/dx =.sin x

When y = cos x).

Now that we have formulas for the derivatives
.=

that may be correct, let us check further using
-

0. numerical calculations. For each function, let

us numerically calculate the average rate of change
0 over various intervals with a fiX;(1 x value (call

it x
1
) as one end point and numerically approximate

the value of the, derivative at x
1
by letting the

lengths of the intervals approach zero.

2.2. The Procedure Explained

Again, consider y = sin x, where y is the sine

of the angle whose, radian measure is x, and approximate

the, value of the derivative.at x = x1. Our intervals

See Appendix 2.

123
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along the x-axis will have x
1
as one end point and x

1
+ tx

as the other endpoint. Wegwant to calculate the ratio

of the change in y to the change in x as we move from

P
1
to P

2
where P

1
has coordinates bc,sin/ ).and P2

2

has coordinates (x2,y2) where x2 = s1 + Ax and

y2 = sin(xf + Ax)..Now,' the change Itrx is Ax and the

change in y is Ay = sin(x1 + tax) - sin x.

We will first choose positive values for Ax (Refer

to Tigure 5) and pick them so that each successive

choice is closer to zero than the preceding one. ,,We

will then choose negative values for tx (refer to

figure 7) again picking them so that each successive

choice is closer to zero than the preceding one. By .

observing Figuees 6 and 8 we see that in either case

Ay/Ax should approach the value of the derivative at

the point, whe,re x = x1. In this way we will get a

decinial approximation of the value of the derivative

of y = sjn.x at x = xl. We will then find the value

of cos z1 and if the approximation is close to the

value of cos x1, we will have further reason to believe

that out formuln is correct.
,b

a

(2.3 ,APplyin°.the Procedure

A We will now use the procedure just discussed to

approximate the value of the derivative °of y = sin x

at x = 0.5. Figures 5 through .8 illustrate the Material

s just discussed.

We will give 0.8776 as our approximation since we

:get this value as we, approach for both the left and

right. We find on our scientific calculator that

correct to -four decimal places cos .5 = 0.8776. Thus

we have further reason to believe that dy/dx = cos x

when y = sin x.

Next, we consider y = cos x'''and estimate the

dtrivatives at x = w/3. In liecording values in the

124, 8
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.x2=.5+Ax x1 =.5

Figure 5. Ex is positive.

x2=.5+Ax xi=.5

Figbre 7. Ax is negative.

x
2
=.5+4x

Figure 6. Positive values of .

Ax approach'zero.

x,=.5+Ax ' x1=.5
L

Figure 8. Negative values of
Ax approach zero.

Our table to approximate the value of the

'derivative follows.

125
9



11,

TABLE III

ApOoximating the derivative of y = sin x at x = 0.5

U1S9

Ax' Ay = sin(0.5 + Ax) 2,,sin 0.S1 Ay/Ax.

0.1 0.08521 0.8521

...-*
01 .0087S1 .8751

`.001 .0008773. --..-8-773

.0001 .0000877¢ .8776

-.1 . . -.09001, .9001

-.01 -.008800 .8800

-.001 -.0008778 .8778

-.0001 -.00008776 .8776

y column we list.four decimal places plus the number of

decimal places in Ax. In the Ay/Ax column we will record

four decimal places.

<Exercises

- 1. You should complete Table IV and the.Sentence following

the table.
4

a

TABLE IV

ApproxiMat.ing the derivative of y = cos x at x = w/3

ti

Ay = cos(w/3 + Ax) - cos(n/3) Ay/Ax

0.1 . , -0.8896 k -0.8896

.01 2o.008685 -0.8685

.001

.0001

-0.1 0.08396 . -0.8396

-0.01 .008635 -0.8635

-0.001
.

-o.000t

,

With our-approximation of we find that -sin(w/3) = °

U1S9

2. Use this numerical method to estimate the derivative of

y = cos x and x = 2.' Compare the result with the value

of cos 2.

Ax Ay = sin(x + Ax) -- sin x Ay/Ax

0.1

.01
.

.001

.0001

--

-0.1

- .01

.001

.0001
9

3. Again, useis numerical

of y = cos x at x = n/6.

of - sin n/6.

method to estimate

Compare the result

the,derivative

with tie value

. Ax Ay = cos(n/b + b4 - cos nie. Ay/Ax

0.1 .

. .01

.q01 so

.0001
1,

1

. .

-0.1
.

- .01
.

- .001 ,

- .0001 0

2.4 Using Degree Measure

You may check your results to.Exercises 1, 2, and 3

with those on page 12. You now may be reasonably

. 11'
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convinced .that we have chosen the correct formulas.

In all these calculations and in the work in Unit

we were evaluating::the sine or cosine of an angle

given its radian'measurec

Let us consider y =,sin x where we are 'evaluating'

the sine of the angle whose degree measureis x.,

Now, we willuse the same procedure to approximate

the derivative of y = sin,x at x = '35! This time we

--will take the sine of the angle whose degree measure

is x. The results appearinTableq.

TABLE V

Trying to approximatethe-derivative of
4 y = sin x at x= 35 usift degree measure

6x Or = sin(35° + Ax) - sin 35° 6y/6x

5 0.0692
'

0.0138

3 .0420 .0140

1 .0142 .0142

.1 .00143
4

.0143

.01 .000143 .0143

-5 -0 a 0.0147.

-3 .0436 .0145'

-1 .1 .0144

-0.1

-.01

.00143

.000143

, .0143

.0143

Thus,, our approximation to theSlerivative of y = simx1

and x = 35° is 0.0143. The value of cos 35° = 0.8912%

This is not'at all close to what we may have expected

from our fork in gecfion 1. In trying to salvage some-
\

ntthi we recall that all the previous work used radian

measures Maybe we should have, stayed with radian measure,

123
12

In fact, in Unit 168 we prove that dy/dx = cos x when

y e sin x and x is the radian measure of the angle.

The problem raised by measuring the angle in degrees,

has yet to be resolved.

4

4

1

U159



5.2 5.7 2,r

Figure 2a. Grapf the derivative of y = sin x .

' Your values in Table I should be close
6

to those listed here in Table IA and your

graph in Figure .2,sbould'be.similar to

Figure 2a above.

The curve graphed in Figure 2a looks

dike the graph of y = cos x. Was that your
guess'?.

3.7 4.2 37r 5.2 5.7 2ir
2

Figure 3a. Graph of derivative of y = cos;c-.

You should ckeck your entries in

Table II with those listed in 'Table IIA

at the right. Your entries should be

close to these. Your 'graph in Figure 3

should look like Figure 3a above.

T e curve graphed in Figure 3a looks

like the graph of'y = -sin x. Did you

guess thi 2

x

TABLE IA

Slope of
tanOnt to
y =,sinx

0'

.5 .9

.55

n/2 0

2

2.5

on

-.4

-.8

-1

3.7 1-.85

4 .

.31r/2

5.2

5.7

-.5

0'

.45

.8

1

ThaLE IIA

x

0

"
Slope of ,

tangent ,to
cosx

.5

'1

n/2

2

2.!

0

-:5

-.85

-1

-.9

0

3.7

4.2

3n/2

5.2

5.7

21t

,9

1

.9

.55

a

tft
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3. MOJEL 'EXAM

.

Based upon the results of your graphical work and

numerical calculations, complete the following
I

'.

statements:

a. aTc (sin x) =

,d
b. (cos x)

2. Complete the following statements. hln determining
the derivative of y = sin x graphidily, the y valdA
was the sine of the angle who;e

measure was x.
.011.11,..

3. is it important to use a particular unit of measure
for angles to get the results that you listed in

answering problem 1?

4. From the graph below, determine geometrically the

value (to nearest tenth) of the derivative of

y = cos,,,x at xl = .8 and at x2 = 2 (radians)
. ,

13.1
t

da. 'At'x = 11.8, the. value of^v cos .x is approxi-

mately ..
_. . 4

16
O

*

b. At x = 2, the value of A cos x is approxi-

mately

S. Complete the headings, then,use a scientific

calculator tocomplete the following table from
4 which you will a.prpoximate the value of the

derivative of y = sin x at x = 0.4 radians.

U159

Ax
.

Ay =
.

....---_

,--
.1

.01

`001

.0001

-.1
-.01.

-.001b

-.0001

,

.

N . .

*

.

-

The value of the derivative y = sin x at x = .4

is approximately

4

. ,

I

-02

<ak

7

17



UNIT 160: VERIFYING CONJECTURES ABOUT THE DERIVATIVES

OF y = sin x AND y = cosx AND APPLYING THE RESULTS

1. PROVING THE FORMULA FOR THE DERIVATIVE

OF y = sinx

1.1 Applying the Definition of Derivative

1.2 Some Numerical Calculations

.1,3 Ploof that lim si" 1

h+0 h

11 Proof that lim cos h - 1

h +0

1.5 Conclusion

1

1

1

2

5

S
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' 6
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U160
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1. PROVING. THE FORMULA FOR THE DERIVATIVE OF y = sin x

1%1 Applying the Definition of Derivative

d
1Let us now try to prove our conjecture that/

Ti sin x = cos x where radian measure of angles is

used. We begin by applying the definition of derivative

where the 6x used in previous work is replaced by h.

We must show that for arbitrary x,

sin(x + h) sin xlim cos x.
h+o

Now, using sin(a + b1 = sin a cos b 11PEs a sin b,

lim
sin(x + h) - sin x

104

becomes

lim sin x cos h + cos x sin h sin x

h4o

Upon collecting the sin x terms and writing as a sum,

we have

lim [sin xLcos h 1) cos x(sin h)].

h-03

Applying laws for limits and keeping in mind that

x is fixed, we rewrite the previous expression as'

sin x lim (cos h 1)
--sin h--+ "'cos x lim

h+o h+o

In order for our conjecture to hold 4, the first limit

must be zero and the second limit must be one.

1.2 Some Numerical Calculations

Before undertaking attempts at tproof, let us use

a handc4culator to compute values of these expressions

134



or h values close to zero., Complete the following

tahresremembering we, are Using radian mkasure. for
. :

- e -

'TABLE I

U160

sin h cos h - 1
COnsidering and

h,
for small values of h

.
sin h ---E--

sin- h
cos h h- 1.cos

h
.

.

.2 - -

.1
.

.05 . .

;01 .,
..

.

7-.2 '

,..1

.. *

.

6

-.OS ',,

-.01 ,

i

that

and

The values just recorded should lead us to believe

lim
sin h

h+o H--

lim
cos h - 1

= 0
.

h-o*

-as we had hoped.

1.3 Proof that lim
sin h,- 1

h+o

We will now attempt to prove that
J.%

limsinh =1
h+0

Let,sus consider/LROS in standard position in Figure 1.

1135,
a A

2

It is clear that for this acute angle we have

Area AOPQ < Area Sector OPR < Arek

.71

Figure 1. Considering LROS with radian measure h.

U160

Since OP R 1, wefind that Q has coordinates

(cos h,O) and P has coordinates (cos h, in h) directly

from the definitions of sin h and cos h. Thus

Area AOPQ,= (1/2)(base)(height) = (h)cos h sin h.

Next, from

Area of Sector Rdn measure of angle of sector
Area of Circle 271-

Area'-0 P R h .

=
n 12

2

we have

Now,pin order to find Area AOSi we need to find RS.

Since AOPQ 2-1,AOSR,we have °-

, RS
TETT

So

Area tOSR = ch)(hase)(height)

sin h,
=' 01)(1) (----Eicgs.

3

O
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Substituting in our inequality involving these two sin(-t) -sin t sin
1.

triangles and the sector, we have c t+0 -t, t+0
-t

t+0
t

,

(h)cos h sin h < ( 1/2)

sin h
EF.g.---F

2.

n.
Multiplying by

sin----r., which is positive since h is

positive, we obtain

1cos h <
sin h < cos

Next, we use the'fact that where a,b,c,d are all

F
c
a-

d
F b

Tpositive, F < if > . Using this on each half

of the compound inequality just obtained we get

Now,

and

SO

1 sin
> > cos h .

1 1
im

cos h 1
h

1l = - =
+0

lim cos h = 1
h+0'

h
lim
hto.

1must be 1 since
sin h

is sandwiched between EFT -F

and cos h.

Now, we need to show that

lim
sin ,

"
h."

4

To do this let h = -t, where t > 0. With this sub-

stitution we''have

+ lim
sin x

lim
sin (-t)

x+0 t+o
-t

AeCalling that sin (-t) = -sin t, we get

a

137 138
4

.Thus

n h
lim

siF----
h+0

and combining this with the proof for h+o, we have

proven that

sin hlim --E-- 1, 0
h+0

where radian Measure of angles is used. *

1.4 Proof that lim cos h - 1

h+0

We will now. try to show that

cos h - 1

h+0

using our last result. Knowing that -sin2h = cos241 7 1

we will multiply to'obtain an equivalent fraction with

cos2h - 1 as numerator: us.

lim cosh = 1 (cos h + 1)

h+0 h (cos h + 1)

cos2h - 1 -sin2h
h +o h(cos h - 1) 1111

0
h(cos h - 1)h+

0

sin h -sin h
E h(cos h - 1)h+

,. sin h
lim -sin h

h+0 h+0 h(cos h 1)

= 0 lim -sin hl
cos h - 1

1..5 Conclusion

Recall that in Section 1.1'we found that



U160.

lim
sin (x + 11?1 - sin x

h+O

(cos h - 1) n h
= sin x cos x lim

si

114 11,0

With the results of Sections 1. and 1.4 the previous

expression becomes sin.:Z (0) + cos x (1) or cos x

which completes the proof that 41i.sin x = cos x.

2. DERIVATIVE OF y = cos x

t,

2.1 .Introduction

Now, we know that ad-- sin x = cos x where x is

any real Aber and we take the sine of the angle

whose radian measure is x. By the Chain Rule

d du
ai sin u = au sin

,

where u is a differentiable function of x. We use

the Chain Rule to obt4in derivAives for the other

trigonometric functions.

2.2 Proof

We Will now prove that we were correct in our

guess'about the derivative of y =-C7Jii7c77' We use the

identities

and

cos x = sin (1-1 - X)
2

cos (x y) = cos x cos y + sin x sin y,

139 6

Cr
U160

OS

ai cos x = IT sin (2- - x)

rr d rr

cos CT - x) arc (7 -,x)

= (cos cos x t sin

= cos (112- x) C-1)

sin y) (-P)

(0 cos x -+ 1 sin I) (-1) = -sin x.

3. WHEN,DEGREE MEASURE IS USED

0
3.1 Geometric Consideration

Let us now attempt to resolve the problem that

arose in U it 159where we computed the derivative of

y = sin x at x = 35°. We hoped to get cos 35°. Let

us use the notation sin x° if we.are taking the sine

of the angle whose degree is x and the notation sin x

or sin x (radians) if we are itking the sine of the

angle whose radian measure is x. We consider the

followinggraphs. Observe in Figure 2 that -0.801

the value of cos 2.5 does not seem to disagree with

what the slope of the tangent to y = sin x at x = 2.5

looks to be. Now, in Figure 3, does the slbpe of the

tangent,to K= sin x at x = 2.5 appear to be 0.9996?

'It should be if d
x

sin x. = cos x °. Now we see
d

geometrically that we sho ld not expect the result

we obtained when we were using values of trigonometric

functions whose radian measure was x.

140 7 "s



I

Figure 2. Radian measure.

C.

yth.999

sinx 1.027

1 y 2

Figure 3.

d[sin u (radians))
dXr

Now, sin x° = sin (riu x).

6 Thus,

cos u (radians)

1 1
dx

d( x°)xe) _ d [sin \1.18's

7T= cos (TIU x) 180 = cos x° To
by Chain Rule.

3.3 Reconsiderations
1

Returning to tr geometric consideration of

y = sin x°, where', x = 2. we have

.999 1

.

y . cos x
0.997

d(sin 2.5°)

i

I .

!Tangent at x m2 2.5inot

'distinguishable 1

from curve.
t, This certainly looks Lii(e.a much more believable value

1 i

1

1.082 for the slope of the tangent line at x = i.5 which is

2.5 n
d(sin 35°}

, ..

5.1T ,

,
sketched in Figure, 3.

0 0

j9-------1 10.----7. :V"--

T We now can express
- :

in terms of co435°.
dx.

1

d(sin 35 °)
.

Tr Y
dx cis 3 5° ,..7.

1 0 °

dx cos'2.5 riu

(0.9990)(
3.1801416

) 0.0174 .

Degree measure.

3.2 Obtai ing a Formula When the Angle is Measured
in De rees

Let u obtain a formula for

(sin x°)
dx

Where u is a differentiable function of x, the'Chain
Rule gives

141

8

:0

. = 0.8193 (
180 0.0143.

i °
..

N,...

Our approximation of 0:0143 that we obtained in Unit
159 on page 12 now Too' good.

-

Vrom,now on when be,differentiati trigonomftx4c

functions we. will always' use rgidanlmiCsure.

s

0

142
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4. PRACTICE PROBLEMS INVOLVING sin u AND cos ,u Examplq.2: y, = ; sin cos x
1

, IX = 2 sin x (-sin x) +.cos x (cos x)
x

4x.
1
= 2[( -sin' x + cos2 x)].

dx

4.1 Finding Derivatives

LeOus combine our new knowledge with previous

techniques for finding derivatives to work some problems!

By the Chain. Rule, where u is a differentiable function

of )e, we have

du7 sin u = sinAl du7 cos u 7 4

. UX UU UX UX

IT cos u-= au cos u = - sin u
du

and

These formulas are used in the following examples

Example 1: sin 3x = 3 cos 3x,

d*Exa5ple 2: 17 sin (x 2
+ 1) = 2x cos (x2 + 1)

Examp141111: cp's (2x - 3) = -2 sin (2x - 3)ax

Exercises

For each of the following find cd4

1. y = sin 2)0

2, y = cos 2x

3. y = cos (x2 - x)

4. y!= sin (x/3)

5. y . cos x°

f
In 'the following examples, we use the,formulas for

taking derivatives wheie a sum,, product or quotient is

also involved. 'These formulas are given in Appendix 31

- if yod need to review them.

Exampte 1: y = sin 2x + cos x

P = 2 cos 2x - sin x.

1 )4
74:

r) 10

Example 3: v
sin 2x

1 + cos x

dy = (1 + cos x) 2 cos 2x - (sin 2x) (-sin x)
x

(1 + cos x)2

2(1 + cos x) cos 2x + sin 2x x

(1 + cos x)2

'Exercises For each of the following find
dx

6. y = sin x + cos x

7. y, = x 2 cos 2x

8. y = COS3 (2x)

9 y = sin x + x

10. y = cos 2x - 2cos x

If. y = sin' x cos2 x

4.2 Finding Antiderivatives

We recall from our work IktIlantiderivatives that

ff(b). = + c

where

au F(u) = f(u).

Thus,

f

since

and

cos u slu = sin u + c

au sinu = cos u,

f-sinai du = cos u + c

since

cos u = - sin u.

144
11
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The following are examples using these formulas' additional- ammunition let us return to battle with the
___

)
-----.:-. plus the formulas

challenge4problems hoping for a successful'outtome.
/ I

aff (u) du = f a f(u) du,
If you have trouble getting started on a problem

and .

or hit a snag -refer to the disCussion for elp_and then
--..) if (u) '-* g(u)

.

du = if (u) du + fg(u) du. fy to continue on your own. After completing your
/

solution to a challenge problem compare your work withEiample -1: fsin x dx = - f -sin x dx = -cos x + c.
Example 2: fcos 2x dx = 1/21cos 2x (2dx) the solution given.

= 1/2 sin 2x + c. 5.2 Out Fishing Again
Example 3.: f (2 - sin35x) dx = f 2 dx +f -sin 1/2x dx

= f 2 dx + 2/-;in(1/2x) (1/2dx)

= 2x + 2 cos 1/2x + c.

Our first step is to use the information from the

graph in Figure 1 of Unit 158 to dtptaKmine the equation

for the position of Jack's cork.

Exercises From our knowledge of trigonometry it is clear 'that

we have the graph' of an equation of -the form y = A sin Bx,

where A is thl amplitude and T is the period. Thus,

frombbservi* Figure 1 of Unit 158, we see that A = 4
and = 1.6 or B = 51T.I. Substituting, y = 4 sin §-4.; t

is the equation for the position of the cork. The

of the cork at t = 0.5 sec. is

y = 4 sin 5n7 (1.5)1

At t = 1.5 sec. we have

y = 4 sin [1-11-T (LS)] = -1.531 cm.

Now, the speed (or instantaneous rate of change of

position with respect to -change in time) is IL. Thus,

we have

f 5 T Sn

T.
If= 4 I T) -47cos t = Sn cos T. t.

So, the speed at it = 01.5 sec. is

'

li , . Sn cos 5 (.5)1 = -6.011 cm/sec.
t=.5)

12.

13

14.

15

16.

17.

18.

19.

20.

21.

Hint

'1cos (-2x) dx

1sin op dx

f2 cos x dx

,12 sin 2x dxsition
13 cos $ dx

fisin dx

1(3 - sin x) dx .

f (cos x + sin 2x .dx

1sin2 x dx

1cos2 2x dx

for 29 and 21:, sine x = 1(1 - cos 2x),

cost x = 1(1 + cos 2x) .-

5.1/

5. CHALLENGE PROBLEMS REVISITED
14

,

.Introm1, iction to 'Solutions
4.00.6*

Now we are armed with new knowledge and skills in
and the speed at t = 1.5 sec is

calculus where sin u and Cos,u are involved. With this
.

12

145 146
'13



-
d

cos
547,1

t(t=1.5)
= 51r (1.5) = 14.512 cm/sec.

U160

The last question to be answered is "At what point

during the 2 secondinterval is the cork lalling at.the

fastest rate and what is the rate?" We wish to mini-

mize4X =_5n
4

511. cos
5i

t on the interval (0,2): The
t ,

minimum value of cos il t on (0,2) is -1 which is
511.attained at t = or t'= 0.8 sec. This will

minimize us

= 511. (-1) = -15.708 cm/sec.
(thirl)

5.3 Maximum Putter Gutter

Referring to Fivire 2 of Unit f58, we see that

if we maximize the cross-section we will maximize the

t

capacity of the gutter. We also oWserve that 6 can be

chosen so that 6 <

From Figure 2 of Upit 158 we have csc 6 = I or,

x = 4 csc 0 and cot 8 = ory = 4 cot 6.

A(Area of cross secticin)

= Area' of Rectangle Area of,Triangle

= 4[(8 - x) + y] - 1/2(4) y

= 4[(8 - 4 csc 8)-1- 4 cot 6] 31(4 cot 6) - 4

(substituting
for x and y)

= 8(4'7 2 csc 6 + 2 cot 6 - cot 6)

= 8(4 - 2 csc 6 + cot 6) .

da
The area will be maximum when av = 0. We don't

know how to find the derivatiVes of csc 6 and cot 6

at this time. What we can do is express csc 6 and

Cot 6 in terms of sin e and cos 6. Doing this we have

147 14

Ur60.
A = 8 (4

2 cos 6
sin 6 sin 6

--dA 8[ (sin 6 (0) - 2 cos 61+ (sin6 (-sin 6) - cos 6 (cos 0)1]

*in2 6 ) e

8 [,sin2 6 sin2 6

2 cos 6 (-1)(sin2 6 + cos2 6) 1

ir2 cos 6 - 1]

L ,sine

since sine 0 + cos2 6 = 1. For dA = 0 We must have the

expression within brackets equal to zero, but this_means ,

that the numerator must be zero. Thus, 2 cos 6 - 1 = 0

or cos 6 = h. Since 6 < T we have 6 =
11.

or 60°, We

also observe that for .6 such that 0 < 6 < IT we have

cos. 6 .r which implies 2 cos 6 1 > 0. Now looking

at our e ession we note that when 2 cos 6 - 1 > 0

we have
dA
a-r, >4. In a similar way we can conclude that

dAaT < 0 when p< 6 < 2
11.

We have now verified that 6 = 3 is in fact the

value of 6 for which the 6 area is maximum.

Since x.= 4 csc 6, we have

11.

x =4 csc y = 4.619

and

8 - x = 3.381.

Thus, the bend should be at approximately 3.381 inches

.from the bend for the right angle and the metal should

be bent up Tradians Or 60° for a gutter with maximum

capacity.

5.4 Average Power Computed

1" We hive (Average power)

T
1P =Tfpdt,

0

148
ft

15
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where

p = 1700 sine t12
t.

Observing.Figure 5 of Unit 158, we see that the graph
of p repeats itself every 12 micro-seconds: Thus T = 12.
Substituting, gives

U160

1
1,2 °

TTP = I 17001 -sin17001-sine tdt
* TT' 0

This problem

will replace
0

by

1700 12

T I
o

s,in2 ..7 t dt.

, .

is like ExerciiselVin section 4.3.

2

111

sin --
2

t

11(1 - cos 16.1,,t)

12
' 1700

P f h(1 -
12

0

cos T t) dt

1700 12 12
= ----

24
[ S dt , S cos

0

1700 [ 12

dt:TT-
0

12,

217 4/1
0

1700p42
24

TT

12
Tr
*

6
j t dt]

7I 0

12 )

36 (sin ; t]u

01 (sin 2n - sin 0)]

1700 ,, 1700= ,i4, 850 watts.
2

Now, consider the geometric interpretation,

12
S. sip2 t dt
0

t
represents the area, (A) under one hump of the curve

g

A = 8

L, lb

We

1shown by //// in Figure 4.. We kpow , Ty

0

U160

A = 12(8*. Thus the rectangle shown by \\\\ with

height equal to the average power P has the same area

as the are under the hump.
g

(wafts) 6

Average

tPower

Figure 4. A

7'

18

t (micro sec)

24 -

geometric interpretation of average power.

5.5 Pulling a Box Correctly

Findings using the quotient rule gives

dF -KW (K cos 8 - sin 0)
TU

(K sin 6 + cos 6)2

if = 0, we must haveUW '

or

K cos 6 - sin 8 = 0

K.4-111cok 6

r

150
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Thus, the fir;t derivative is zero for @ such that

tan6-= k we can als9 show the first derivative change&

from negative to positive at this value of"6 whith,

verifies that this is the the force is

minimum. New, K is always some positive number, tso

Jason is correct and the angle depends on tile coefficient

of friction.
*I.

Figure 5.. 'C.oefficient of friction.

t.

.4
If one object has a. higher coefficient of friction

than another object on a particulay surface then the

angle at which the force should, be applied is greater. ,

1 .

151
4 N.

6. MODEL EXAM

sin h
1. What technique is used to show lim 777.- 1?

110

2, What limit other than lim sin h

11+0

= cos x?,prove IT (sin x)

Complete the statements in 3 and 4.

of
dx

`' 3. The value

x = 17°.

'"(1
4. The value of ai

x = 39°

sin x is

cos x is

was used to

1123.i
In problems S' thrti 10, find

5. y = sin (x2 - 3)

6. y= 2 sin x + cos 3x

7. y = sin2 x

8 , y = siAr.,x cos x

9. y = cos(3x2 - x)

10.

"11:

12.

13.

14.

,y = cos2x sin x

Find the antiderivatives in

sin x dx

cos (3x) dx

lii

(S - 2sin x) dx

KW
Given F

Problems 11 t

dF
.find aTk

sin 6 + cos 6

18

152

,when

when

19



7.

.

1. y = sin 2x2

IX, .
x

4x cos 2x2

2. y = cos 2x

g= -2 sin 2x

3. y = cos (x2

s..--- d0- -(2x - 1)
. g
4. y = sin I

li = 1 cos i

%.
N5. y = cos x° = cos (180 x)

w 0
17. -5-4 sih (i) dx = -cos (i) + c --,-----

,:.

k
-sin (1;0 x)g 180

IT

1(.
j(3 sin x) dx = 5,5--dx 4: f-sin dx = 3x + cos x +c

6. y = sin x + cos x 1
19. 5(cos x + sin 2x) dx = fcos x, d; :11f-2 sin 2x di

U160 '

ANSWERS TO EXERCISES 11.. .

*.-

12.
.

13.

14.

15.

. -16.,

)
\,.

, _,.._,I1169...
--..._

y =` sin2 x cost x

= -2 sin2 x cos x sill x + 2 cos2 x sin s cos x

= 2 (cOs2 x sin x - sin3 x cos x)

= 2 cos. x x - sin2 x)&in x (cos,2

-45-2 cos (-2x) dx = -1/2 sin ( -2x) + c

/

-25-1/2 sin (I) dx = -2 cos (I) + c

2rcos x dx = 2 sin x + c

.

-5-2 sin,2x dx = -cos 2x +'c

-.,

95, 3 cos (I) dx = 9 Sin (xi) + c
*

x)

sin

*

(0 -.Z)

, .

7. y =

8. Y=

cos x .-- sin x

X 2 cos 2x

-2x2 sin 2x + 2x cos 2x

-2x (x sin 2x - cos 2x)

cos3 (2x)

-6 cos2 (2x) sin (2x)

9. y -sin x 4 x

x = cos x + 1

10. y = cos 2x - 2 .cos x
,

-2 sin 2x +2 xdi

4Y . 2(sid x sin 2x).

20

15?

ti = sin x - 1/2 cos 2x + c

20: 5s1n2 x dx = 1/25(1 - cos 2x) dx

= 15[1dx 1/25 nos 2x dx) = 1-4 sin 2x

21.- 5dos2 2x dx = 45(i + cos.4x) dx

= 4[5dx.+ 4 54 cos 4x dx)

x 1
= + f sdn 4x + c

154
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UNIT 161: DERIVATIVES OF OTHER TRIGONOMETRIC FUNCTIONS.

1. OBTAINING FORMULAS

1.1 Introduction

1.2 The DXivative of tan x

1.3 The Derivative of sec x

1.4 Complete List

`2./- PRACTICE FINDING DERIVATIVES

2.1 Using Chain Rule Again

2.2 Applying the Formulas

2.3 More Involved Applications

2.4 Puttering Around

3. MODEL EXAM'

4. ANSWERS TO EXERCISES
,

-41k

S. ANSWERS TO MODEL EXAM\...
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ti 1

1

1

1

2

2

2

3

3

4

6

7

°' '

10

&riot.

1. OBTAINING FORMULAS

1.1 Introduction

U161

In our discussion of the solution to the.Putter

Gutter Problem (see Section 5.3 in Unit 160),1,0

obtained the cross sectional area A of te_gutter.

from the equation A = 8(4 - 2csce + dte). To
dA

obtain -- we had to express csc 0 and cot.° in terms

of sine and cos° since we'did not haveformilis

for the derivatives of these-trigonometric function's

To eliminate this extra work in the future, we will

now derive the formulas for the derivatives of the

other four trigonometric functions. We will follOw'
dA

the same plan used to find ulT and qxpress each of ..

the other funCtions

functions,

in terms of the

1.2 The 'Derivative of tan x

sine and"o'Sine

ci
.,,,

,,.

.

. .

To obtain th; formula f'br the der&vati1ve of tan x- 1

we express'tanx :ws,sinx
and use the tali quotients

cos x
which guarantees that \

'where

s. .

d u v (du/dx) - u (du /dx)
."(17(v)

v z

uand v are differentiable functibns of x.

tan x,=
ax

d (sin x cos x cds X - sin x (-sinx)
dx-'cosx'

COS 2 tX

cos x + sin2 x
j-

0 cos x

1.3 The Derivative of sec x

We will express-sec x.as
1

cos x
rule again to obtain the:derivative of sec x.

1 *_t
sec 2 x.c

cost x

a

V

and u41-theLquotient

156
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U161

1 ) cos x (-sinx)17 sec x= (

ax.cos x'
cost X

sin x *1 sin x
sec x tan x.

cost x
cos X cos x

Exercises
2

'
1. Expressing cot x as

COS X
, follow the procedure usedto

sin x

obtain the deriv'itive of tan x to obtain the derivative

of cot x.

2. Find the derivative of csc x by replacing csc x by Sin x

and using the same technique as used for the derivative

of 'sec x.

1

. .

1,4 Complete List
,

.

With the solutions to Exercise 1 and Exercise 2
--......-

in the preceding section we now have obtained formulas

. for the derivatives of all six of the:trigonometric

/functions of.L...,;:m1 should check yourepfocedures and

results to .Exercises 1 and 2 with the solutions given

at the end of this unit. The formulas for the derive-
.

tives of the six trigonometric functions of x are

/
listed in Appendix 4 for your convenCience."

2. PRACTICE FINDING DERIVATIVES.

2.1 Using Chain Rule Again -

Having the formulas for the derivative'of tan x,

cot x, sec x and csc x, we wish to obtain the formulas

for these trigonometric functions of u where u is a

differentiable,function 9f x. We apply the Chain Rule
0. in each case just aB we_did for sin u and cos u.

For t'an u wg have
. .

d du IT17 tan u = az. tan u IT = sec u IT ..

15?

k

5

Theyformulas for the derivatives of the remaining

trigonometric functions of u foil& inthe same

manner. The formulas for all six trigonometric

functions of u Are listed in Appendix 4 for your

reference.

2.2 Applying the Formulas

These formulas.are applied in the following

examples. .

Example 1:

Example 2:

Example 3:

,U161

ci x 1a tan (y) sec' x
3

csc 2x = -2 csc 2x cot 2x.

.ai cot x2 - _ -2x-csc x'.

Exercises

LitFind in each of the following.'
dx

3. y.= tot iF.

4. y = csc (2x - 1).

5., y = tan x3.

6. y = sec (-)k):\

2.3 More_IlrolvedApplications

jn.the following examples /a sum, product or, quotient

may also be involved. These.formtilas are listed in

Appendix-3 for reference. Derivatives involving sin u°
and cos u which we considered previously are included

in the examples and exercises that follow.

Example y = tan 2x vec x

41. = 2 sec' 2x + sec x tan x.

2 3

158



Example 3:

1.X.=-x (2 sec 2 2x) + tan 2x

= 2x sec2 2x + tan 2x.

U161

_ cos x
' 1 tan 2x

4I

dy (1 + tan 2x)(-sin x) - 2 cox x(sec2 2x)
Tx-

(1 4- 2x)2

Exercises

For each of the following find 1.c.

7- y sin x-+
8. y = x2 csc 2x.

9. y = tan x sin 2x:
10. y = cot; (2x).
H. y = sec x + x.
12. y = cos 2x - 2 csc x,

13. y = x2 tan (i)v.

sin 2x
14. y - tan x

2.4 Puttering,Around

We return to the Putter Gu er Problem of Unit 158
dA

one more time. Let us find aw ow that we have the

formulas for the derivatives f csc 8 and cot 8.

A = 8 (4 - 2 8 + cot 8).

3T = 8 [--.2(-csc 8 cot 8) + (-csc2 8)]
dA

= 8.[2 cse 8 cot 8 - csc2 8].

We see that having the formulas* for the derivatives

of all the trigonometric functions availableymade-0
'1 4

finding
a8
, easier, and they mayebe of use to us i- n

future putterings.

160

ke.

U161
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U161

3. MODEL EXAM

Differentiate the functions in Problems 1 and 2

by first expressing them in terms of sin x and cos x.

1.
d
R (tan x) =

d
i

2. a (csc x) =

tie

Find in\each of the following problems.

3. y = cot x.

4. y - sec x.
46

S. y = sec (3x +

6. y = sin 2x + tan x2.

7. 'y = x tan x.

8. Y

,6

cos x
1 + tan 2x'

JO,

4. ANSWERS TO EXERCISES

dcos x
1. d cot x =

t

x Ec'sn--1-7c)
By quotient rifle,

U161

& (cos x sin x (.-sin x) - cos x (cot, x)
..

TR'sin
sift u

-sin2' x - ooi2 x -1 (sin2 x + cos' x)

sine x sine x

;111/ - csc2 x.
sine x

2. csc x =
ax sin X) By quotient rule,

"1 (cos x.)d _-sin x -cos x
Ntsin x'

sin2 x sin2 x

1 cos x
csc x colt x.sin x, sin x
.a

cv

Note: We essentially did these exercises in our g.

dA
calculations for 17 in 5.3 of Unit 160

y

Xf'CSC2 1)4) . 12- csc
2 7.

4. y = csc (2x - 1) .

= -csc (2x - 1) cot (2x - 1)

t

= -2 csc' (2x - 1) cot (2x 1).oot

5. y =tan x3.

(sec2 x3)(3x2) = 3:42 sec2 x3.



6. y = sec (-x).

I/

U161

. [sec (-x) tan C-x)j(-1)'= -sec (-x) tan (rX).

Y=

Y=

sin x'+ tan x,

cos X 4' sec 2 x.

csc

1
U161

r sin 2x
14.

Y 1 - tan x

dy (1 - tan x) cos (2x)(2) - sin (2x)(-sec2
Ti

(1 - tan x)2

2(1 : tan x) cos (2x) + sin (2x) sec2 x
.

(1 - tan x)2

[-csc f2x) cot (2x)(2)] +..[cse (2x)]2x

= 2x csc (2x)(-x cot 2x + 1).

9. y. x sin. 2x.

= tan x cos (2x) (2) + sin (2x) sec2

y ot3 (2x).

.. 3 cot -'(2x) C-cse2 (2x))(2)

= -6 cot2 (2xr csc2 (A).

11. y sec x + x.

ed
= sec x tan x*+ 1.'

12. y = cos 2x. - 2 csc x.

'A '

ii-= -sin (2x)(2) x cot x)

:2 sin- (2x) + 2 csc x cot xj

x
y = x2 tan. (1.).

4X.= X2 sec (I)* +,tan (-)i) 2x
dx .

=. [ lx
x.

2 tan )

1(7

Ito

P'

8

164.
o .
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APPENDIX 1

THE TANGENT METHOD FOR ESTIMATING DERIVATIVES*

24
Objective if To be able to use a triangle and ruler to

estimate the slope of a line on a graph.
A

Graphical Method for Finding the Slope of a Line

Many times in our.work we want to measure the slopes

of lines plotted on graphs. We can always calculate the'

slope cif a line by reading the. coordinates of two points

on the line, and applying the formula

slopes' change in vertical units
change in horizontal units

y2 yl Ay
. x2 - xl ATc

.

But there is an easier way that saves the effort-of read-
.,

ing the sour numbers from the graph necessary tocalculite

each slope. For this method, you will need,a straight

edge or ruler, and a small drawing triangle.

Figure 1.(1 is a graph that shows the ,pii4ofile of the

Union Pacific Railroad. The problem is to find the slope
4

of the railroad between Lakeside, Utah and Wells, Nevada

directly from the graph using as little arithmetic as pos-

sible. The following steps provide arpeasy method to

measure this slope.

Step 1 (see Figure 1.2). Place the triangle with one

edge along the line whose slope you wish to measure.

Step 2 (see Figure 1.3). Place the ruler/against the

other sideikie the triangle. Check Zhat the first edge of

the 'triangle is stillidlong the line you wish to measure.
. .

*Adapted. by the UMAP Project Staff from Diffelental'on, Second
Edition, 1975, Project CAI,C Education Delielopplent7Center,
Newton,.Massachusetts, pp. 27-60.

,
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.0"

Figure 1.3.

A-3. .

-

Step 3 *(see Figure 1.4). Slide the triangle along.

the ruler (holding the ruler firmly so it will not slip)

until the first edge of the triangle passes through an

easily read intersection of th graph paper. (In this

example, the tangle was moved until its edge passed

through the intersection of the 1,000-mile line with the

5,000-foot'line.' Since thestriangle was slid along the

ruler, this edge is still parallel to the line whose slope

is to be measured. The slope of the edge of the triangle

is therefore still the same as the slope of the original

line.)

Figure 1.4.
;

Step 4 (see gigure 1.5) Read the slope of the edge '

of the triangle at the point where'the triangle cuts the

next major vertical line on the graph paper. Here the

next major vertical line is at 1,100 miles or is 100 miles

further from the first easily read inter.Rection. The tri-

angle edge intersects this line 1,100 feet above the fir.st

168
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read intersection. The upward slope of the triangle, and of

the track is therefore-

1 100 feet
=..11

feet
100 miles FITIF

or 11 feet per mile. Note that i-f you choose the hori-

zontal distance to be 1, 10, 100 or 1,000 miles, the

division can be easily done in your head:

Exercise 1 (Short Method'for Grades on the UP-SP RR). Using the

method above, find the slope pf the track between

Reno, NV and Truckee, CA

GreeaRiver and EVanston, WY

Midsection between Omaha, NE

and Julesburg,. CO

Wells and i.ove)ock,'NV

A-5

169

Improved Method for Finding Slopes

It is possible to improve this method to avoid the

division and the placing of the decimal point. Try the

improved method on the same graph of the UP-SP RR you have

been,using (Figure 1.1). As with many "how to do it" direc-

tions, it takes much longer to describe than to do, so

follow along and your patience will be rewarded. If you

have trouble followingthedirectl-on-s-, have yolir instructor

give you a quick demonstration.

Setting Up a Scale for Reading Slopes

Step A (Figure 1.6). Mark a standard interfiltion

one major division in from the right hand -edge of the graph

paper. (Such an intersection has already been marked with

a 0 in Figure 1.1 at the beginning of this section, and in

which you may continue to set up a slope scale and make,

measurements.)
/ 9

Step B (Figure' .6). Temporarily mark the first major

division above the center of the slope scale with the num-

ber of vertical units it separates. Here it is marked

+1,000 feet since it represents an increase in elevation of

this amount.

Step C. Calculate the value of therslope for this

first division by taking the ratio of the vertical increase

(1,000 feet) to the horizontal increase (100 miles) for ohe

major division.

Ah 1
16

000 feet ftslope = a
100 miles

or 10 feet per mile.' Write this number of thd`scale in

place of the temporary mark of 1,000 feet.

Step D. Mark the slope values -910, +20, +30, etc.,

opposite the main divisions, going upward ftOm Zero. Place

-10, -20, -30, etc., opposite the main divisions going down-
ward from zero. (See Figure 1.7.) Write the units in which

the slope is measured (ft/mi) at the top of the scale. You

are now ready to use the Scale to measure slope.

170
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To tot up a solo lot droct rowing of slogs ...

MOO

Figure 1.6.
1,500

-' Figure 1.7.

Measuring the Slope with the Slope Scale

'To
usethe scale just marked to measure slopes in a

convenient and direct way, set the triangle to, the line

you wish to measure and'slide it by means of the ruler

until its edge passes through the standard intersection 0
Read the value of .the slope at the-point where the edge of

the triangle-crosses the slope scale line. .(See Figure 1.8.)

NOTE: You cannot always slide the triangle,to a 41

position.where its edge passes through both the standard

.intersection` and the slope scale in one slide along. the

ruler. When:this happens, hold, the 'triangle, firmly in the

last position, shift the.ruler so it is along a different

171 A-7
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remarks. As,you can see from'Figure 1.9, the slope of

the curve changes gradually and steadily from t = 1.5 to

t = 2.5. What then do we mean when we ask what the speed

is during this interval?

Calculating Average Speed Numerically

To' avoid this problem, we define what is called the

average speed* over the interval. Figure( 1.10 shows in

detail the portipn of 'figure 1.9-from t = 1.5 sec to

- __.t. =.2.5 sec. The "average" speed is Rbtained by finding

how far'the ball bearing fell during this time interval,

...)

and then dividing the distance fallen by the length of the

time interval. From the graph in Figure 1.,10 we see that:
I

when t = 1_5 sec, h = 36.0 ft

when t = 2.5 sec, h = 100 ft.

.

The average speed over the interval from t = 1.5 to t = 2.5

is then:

distance Fallen 100 ft
vav time to fall this distance 2.5 sec

64 ft
T-TEIE 64 ft/sec,

In symbols this calculation may be written:

vav

and is, of course, just the formula for the slope of the

line from point A to,point B in Figure 1.11. Point A has

coordinates f
1
= 1.5 sec and h = '36 ft while the point B

has coordinates t
2
.= 2.5 sec and h2 =100 ft.

h 2 - h1 _th
t
2

-' t1 At

36 It
- 1.5 sec

*It is very important to realize that "average" here does not
mean what it usually means. The average speed is not found by add-
ing together a number of speeds and then dividing by the number, of
speeds. The average speed in the sense used here is that constant
speed at which the ball bearing would have to move between t = 1.5°
sec and t 2.5 sec to cover the distance it actually does move.
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t

A-11 ....ft

1.0 2.0 0
Figure 1.10. Small section of Figure 1.9.

h

t

1.5
CO

Figure 1.11. The "average" speed from t = 1:5*sec
to t = 2.5 sec isequal to the slope
of the line from A to B.
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CalTulating-Average Speed Graphically

We can also find this slope (average speed) using the

"sliding triangle" method described a shqrt while earlier,
.0 1

which leads quickly to reasonably accurate results. In

. Figure 1.12'this method,is used to find the average speed

I'of the ball beating between t = 1.5 sec and t = 225 seq.

The result compares very favorably withthe computed value

of 64 ft/seC.- .

4
''s if. .'"'

, ../ .
Objective 3: To beable to estimate the instantaneous rate

.
; of ,change of a function by giftaphicaZ means;

A .. .

that is, measure the slope oe a Zine tangent

to the curve. ..-

Rates of Change of a Smooth Function at a Point .

When we found the average speed of a falling ball over

an interval of one second, the average speed was not the

actual speed at either the beginning br the /end of the

interval. Rath , it represented that cen4ant speed with

vihich'iheball wou14 have covered the 64 feet fallen in the

same one second of time. suppose now tht instead of 17ght-
,

ing.t average, we wanted the instantaneous speed at the'

moment the clock read J.5 seconds. The average speed over

an interval can be measured with a tape measure and a stop

watch: we measure the distance traveled'ana divide ,by the

time it took to travel that distance. Butobvious an

. instantaneous speed cannot be measured or calcula ed in the
. .

same way; we would need tomeasure the distance traveled ip
,

a time interval of zero length, '

, . 4
Taking the Average over Intervals
.

!4e

We will-find tote instantaneous speed,. not by measuring

a time interval of zero length, but by "sneaking up".on it:

we rind the average speed over shorter arid shorter time

intervals beginning at t =1f5 sec. The average spied,

starting aty1.5 seconds, but measured over only p.8 seconds

insteadipf one second; is measured in Figure 1.13 by the

"sliding triangle" method and comes out to 61 feet/second.
(
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Figures 1.14, 1.15, and 1.16 repeat the measurement of o

average speed over intervals of -0.6 secat 0:4 'sec, and 0.2

sec. The results of these measurements °IT the average N

speed are showntin Table 1. We would like to continue mak-

ing suchraphg in order to extend the table to include

'.even shorter.time intervals., Rut here a praxlical diffi-

culty arises: For valuers of Al smaller than about 0.2 sec,

it is impossible to read such graphs accurately enough to

obtain reliable results. 'At the moment, the best we can do

isto say that the instantaneous velocity at t = 1.5 sec is

something near SO ft/sec. In Appendix 2, howevero we will

see how this methZd can be used to arrive at a more accurate

answer.

TABLE 1

Average Speed of .Falling Ball Figured.over

Intervals Starting at t = 1.5 Seconds

Tiine

Ar (sec)

,Average Speed

vav (ft/sec)

1:0 64.0

0.8 61.0

57,5:

0.4 54.5
. .

0.2 51.0

Exercise 3 Use the graph of Figure 1.17 to estimate the instantaneous

speed at t = sec. Follow lie proceduredescribed above, calculat-

ing Ah/At for a succession offparajle? and smaller v4luetof At;

o begiafing at t = 2 sec.
I
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Itate'of Change of a Point from the Slope of a Tangent Line

If the method just used in examined in detail from a

graphical point of view, it'can lead to 'a more accurate.

estimate, of the instantaneoua velocity. Moreover,
4

this

more accurate ensAlti- can be found without the need to draw

as many graphs as in Figures 1.13-1.16, or to read as many

successive values of the average speed such aSthose in

Table 1. "rfius, look at the series of diagrams shown in

Figure i.18 and notice what happens to the successive lines

whose slopes gilie the average speeds. As the time interval

.d

Figure 1.18, 'The line ttat-cdts the curve becomes the line
that touches the curve as the two pointA move
together.

185. A-21

gets shorter and shorter, the points wfiere the line cuts .1,

the curve move closer and closer together. As At 0 (Fig-

ure 1.18e),-these two points unite to become one point;

the line then touches 'he curve in one point only; grazing

the curve. Such a line Owes the slope of the curve at

that point and'is called a, tangent line (from a Latin'word

mean4ng "to touch"). The slope of the tangent line is

defined to the 'instantaneous 'speed at the point (that is,

at the instant of time) where the tangent line touches the

curve.
AA,

This conclusion gives us a simple way to estimate the

instantaneous speed (or rate of change) from a smooth

graph. We'merely draw a tangent line'(which can usually

be done quite accurately by eye) and measure its slope.

To measure the slope of the tangent'line accurately, either'

draw a long tangent line and read off widely separated

.points to compute its slope as in Figure 1.19, or use the

sliding-triangle Method as shown in Figure 1.20.

Note that the value determined from Figure 1.20 is

48 ft/sec. This, then, is our estimate of the instantaneous

velocity at r.5 sec.

Exercie 4. Estimate the instantaneous speed of the falling ball at

t = 1, 2, and 3 sec by the tangent method. Use the graph Figure 1.17,

ExerciAe 5. The graph in Figure 1.21 shows the area of an open wound

versus time, In doing the following, use the smooth curve in the

figure, not the dots. The healing rate is. the absoate value of the

rate of change 'the area of the wound, asured in cm2 /day.

(a) Sketch a graph of the rate of change of the area of the wound

(cm2/dayY.,

(b) When is the healing rate-the fastest? The slowest?

(c) Use the 'tangent method to calculate the instantaneous rate of

healing at 8 days and at 1.5 days.

(
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ANSWERS TO EXERCISES

1. Reno, NV and Truckee, CA:

Green River and Evanston:

Midsection between Omaha,
and Julesburg, CO:

Wells anyIpLovelodk, NV
'0, Z:7

2. section aft Julesbjirg:

Section,befor Green River:

NE

+1

Section after Truckee: "

35 ft /mile

+7 ft/mile

+8 ft/mile.

-6 ft/mile

6 ft/mile

-5 ft/miAg.(±1)

47%ft /mile 4±5)'

3. The table shouts that the instantaneous speed at t = 2 sec is

64 ft/sec: -

4.

At °Ah/At

(sec) (ft/sec)

1.0

0.5

0.05

0.01

0.005

80.0.

72.0

65.6

64.8

64.16

64.008

t

(sett

spped °

(ff7Sec)

.14

2

'3

e

.32

63

96

012

)

5'. (a) See the graph at the top.of the next pa-ge.

(b) The healing rate isiaptest at about 15 days, when the wound

is nearly healed., It is slowest at the outset

Wound is newly formed. -

. .

-
° °(c)

r
c) At 8 days! about 0.4 cm

2
/day.

At 13.5 d : abo t 0.5 cm2/day.
7.-. .

191
when the

A -27

5.'a)

its

0.5

0.4

0.3

0.2

0.1

H 1

HNNng
Rau
(an2Aky)

cOm

0 5 . to l5.

6. 1st injection: -2nd day: 0 units/day

5th day: 0.3 units /day

15th day: 2.2 units /dpy

2nd injection: bid day: 15 to 20 units/day

5th day: 0,units/day

15th day: 0 units/day

.

Note xhatafter the 2nd injection, the amount of antibody may

reach a higher level than it does after the first injection.'

14

t

I 192
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V.

-7. The following are examples of curves that satisfy the criteria

given in the problem. Your curves may look quite different.

1,93

slope negative

ta.
1

Y,

0

. slope zero

A

I

4

A:29
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APPENDIX 2

RATES OF CHANGE*

Objective 1: To be able to estimate numerically the

average rate of change of a function given

by a formula.

In Appendix 1, all our information about rates of

change 'Came from graphs. We now explore bow to find the

itverage rate of change for functions given by a simple

ormula.,, The function we use is one you'have probably

seen before. If an object is dropped, the distance, h,'

which it falls in a time t is given by

h = 16t
2

.

It is important to keep in mind when we'use this formula

that t must,be in seconds and that ti comes out in feet.

For example..to find out how. far the object has fallen at

t = 1.5 sec", we calculate d

h = 16x (1.5)2 = 36 feet.

Figurt 2.1 shows a graph of this function.

-Calculation of an Average Speed of Fall

Let, us compute the average rate of change of h from

tl = 1.5 sec to t2 = 2.5 sec. This really the Average
spe of fall and can be calculated from the formula

(average spee.d) =

where Ah is the distance fallen in the time interval dirt.

See Figure, Z.Z.

As usual, we can write

Ah = h
2

h
1

." *Adapted by the UMAP PrOject staff from Differentiation, Second
Edition, 1975, Project CALC, Education Development Center, Inc.,
Newton, Massachusetts, pp. 63-75.
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figure 2.1. Distanceas a function of time for a falling object.

4

I

h2

100.-t
h (feet)

1.

50

h1

\
Lit

t/

1.51 2.5

t

Figure 2.2. Enlarged.portion of Figure.2.1.
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where h
1

is the value of h when t = t
1

(which is 1.5 sec

in this example) and h2 is the value of }'when t = t2

(= 2.5 sec in this example). We also hhve

At = t2 - t1

so th&

(average speed)
h2 111

t2 -'t1

We have seen equations like t in the previous unit.

What is new here is that now.4e-can calcUlate'h and h
1

h2

from a forimura instead of estimating them fromea graph.

Thus since 111 = 16>;i,'
2p' we have *

h
1

= 16.t
1

2
= 16(1,.5)

2
.= 36 feet.

In just,the same way,

= 1612 = 16(2.5)2 = 100 feet./

Accordingly',

41.

AR
h
2

- h
1 64-ft

(aVeragesspeed = 64 ft/sec.
At t.2 - t1

Objective To be able to approxithite the instantaneous

Nrateiol%changt of a function gilien by a

formula by taking the average rate of change. 4.

over smaller and smaZZer intervals.
.,..
...

The prpceluxe described in the previous section is

useful when we want to .calculate an average speed. The

result is.almost certainly more:pregise than any we could

read from a graph. But w at we. are really after is not the

average speed over an interval, but the speed a? 'some par-

ticular instant of time (what we have called the instantane-

ousous speed). In Appendix 1, we- calculated instantaneous ,,

speed'by finding average speed over shorter and shorter.

intervals. What we did there ,can be summarized in the fol.: .

lowing way, , ' .

. Am32

71.
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The process that defines instantaneous speed may be

4*pressedin.compact form by the following word equations:

7value approa>1ed by [ le]
as At+ 0'= 1

eous]

Or

1

value approached by 1-11
avj

1 as At+ 0 = v.
. L

Numerical Approximation of Instantaneous Speed

We will again approximate the speed of a falling body

at t r 1.5 seconds, but this time we will begin with the

formula for distance of fall as a function of time, h 16t2,

instead of starting with the graph as before.-.)

Throughout the,calculation, 1115= 36 ft and t1 = 1.5

sec. Table 1 shows the results. The first column gives the

time at which the instantaneous speed is to be found, 1.5

sec. The second columgegives the interval of time over

which the average speed is.to be calculated. As we move

down the table, we let the value of At get smaller and
.

smaller. Column 3 giveg tie value of r2 = t1 + At, which is

the time atShe end of the-Interval. Solving this simple

equation for t2 gives'

J

t
2
= t

1
+ At,

In our, calculation t 1: is always, equal to 1.5 sec, so we

can write this last expression

, . .

't2--= 1.5 + At (t2 and At' both, in seconds).

Calculation of Row ' oeTable 1

Follow flie calcu\ation of the numbers in Table 1 by

exaakining in detail the second row (vhich is typical 'of all

rows in the table), Column/1 of.this row is, of tau e,

tl = 1.5 sec. Ii Column 2 of the second row we have t e

number 0.80 sec. This means that the locond corres

pOnds to the choice tt =, 0.80 sec. Column 3 gives the

value of t2 which is gotten from the last equation above:

197
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J

j
TABLE-1

Calculation of Average Speed
Over Shorter and Shorter Time Intervals

/ (1) (2) (3) (5) (6)

Time at Length of
,
Time at

'Beginning + Time -End of
. v

=
of interval Interval Interval

(sec) (;ec) * (sec)

Height at
End of
Interv4.0
(ft) lir

Change
. in

,Height

(ft)

Average
Speed Over
Interval

(ft/sec)

t1 + At
-

=
,t2.

h
2

t Ah Ah/At

1.5 1.00 = -2.50 100 6i . 64

40e5 + 0.80 = 2.30 84.64 48.64, 60.8

- 1.5' '+ 0.60 = 2.10 70.56 ' 34.56 57.6

1.-5 + 0.40 =

'1,5 + 0.20 = 1.70 46.24 10.24 51.2

.1.5 + 0.10 = 1.60 46.96 p.96 _, 49.6

1.5 + 0.01 = 1.51, 36.4816 0.4816 ' 48.16

1.5 + 0.001 = 1.501 36.04802 0.04802 48.02

putting At = 0.80 we find't2 = 1.5 + 0.80 = 2.30, the'num-
.

ber giv,enin the second now of Column 3 of the table.

, Column 4 of Table 1 is h2 the distance the object has

falle_n by tz = 2.3 set.' This vague is-ohtainedfrom our-

formula for h in terms of t: 'h = 16t 2
. Thus when

t = t
2

= 2.3 sec, we get ;

= h
2

= 16(2.3)2 = 84.64 ft

and, you can see this number in the second row of Column 4.

These-numbers, as well as those we will calculate next, are

shown in Figuye 2.3, which is exactly like Figure 2.2

except that it corresponds to At = 0.80 sec rather than 1

sec .
Column S gives h whichoby definition is

Ah =

198
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h (foot)

100

84.64

I

60

At.. 0.80 see

10 1.5

t(seic)

2 2.3 2.5

Figure 2.3

a

Since h1 = 36 feet throughout our calculation this equation

Ibecomev-N .

Ah = h2 - 36 (h
2.

and Ah both in f4t). .

From the previous calculation (Column 3) we know that

h2 = 84.64 ft. It follows then that for row 2 of.Table 1

Ah = 84.64 - 36 = 48.64 ft

and this result- appears in Column 5..

The last column, of the table (Column 6)4is the average

. speed of the falling object over 411 intgval of time. 0

- At = 0.80 sec'beginning at t = tl = 1.5 sec, Using

At = 0.80 sec (Column 2) and Ah.=.48.64*ft (Column 5) we

get

Ah 48.64 ft
pt 020 sec' 60.8:ft/sec,

the number' listed in Column 6 Of Table 1.

\ 1.99
)

A-35

All of Table 1 is made'this way, each value of At

N)(Column 2) being chdosen sm ler than the value in the pre-
,.

vieus row. Spot check a few of the numbers in other rows of
'Table J to be sure you understand, how each is, calculated.

Exercise 1. The fourth row of Table .1 (corresponding to At = 0.40 sec)

has been left incomplete. Follow the procedure discussed above and

fill in the row. Consult Table 2 to See'if the value you obtain for

Ah/At)s correct;

1'

Results of the Calculkionas At i 0.

. Now that we have Table 1, we can make A second; much

.--simple'r table, by omitting everything except the At and
1 -

Ah/At columns, as is dome in Table 2. Since we are

interested in the average speed, Ah/At, for smaller, and

smaller values of At, these,are the important columns of

Table 1; the other columns were put in only to assist us in
making the calculations.

I

111.
TABLE 2

. The Average Speed
Over Shorter and Shorter Time Intervals

,

Length of
Time Interval

(sec)

At

Average Speed I

Over Interval
(ft/sec)

Ah/At \,

1.00 64

0.80 60.8

'0.60 ' 57.6

0.40 54.4

0.20 51.2

0.00 r49.6

0.01' 48.16

0.001 48.02

200 A-36
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120
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80

60

40

20

0

2....mowneOse.woomosommom simosernewso
msome.............................

1 2 3 4

Figure 2.5. Graph of y = x3.

.

Numerical Calculateion of the Slope at x = 2

To find the slope, of the curve in ;Figure 2.5 at x = 2,,

we proceed.as we did above in calculating instantaneous

velocity. That it, we calculate

^ty. YZ Yl
Ax x2 xl

for smaller and smaller values of Ax (where Ax = x
2

x
1
).

In our example, xl = 2 and so yl = 23 k 8. Hence,

_.Y2 Yl Y2 8

Ax Ax

The results of such a calculation are shown in fable 3., .

This table isade exactly the way we made Table 1, so we

will not discussit in detail., but you should spot c1eck a

few of the numbers. (We.have rounded off the numbers in

Table 3 so. as to 'keep no more than two figures after the

deCimal point in 5x.)

We now have a m hod for finding instantaneous rates'

of change. Speed, or more correctly instantaneous keyl, is

an example of this. Prictice this method on the next few

exercises.

203

TABLE 3 -

Approximating the Slope of y = x 3
at x = 2 by Letting Ex Approach Zero

x
1

+ Ax
r-

x
2

y2 Ay= y
2
-8 Ay/Ax

.2
$

+ 1.0 = 3.0 27. 19.0 19

2- + 0.50 = 2.50 15.625 7.625 15.25

2 + 0.20 = 2.20 10.6118 2.648 13.24

2 + 1).10 = 2.10 9.261. 1.261 12.61

.2 + 0.05 = 2.05 8.6151 _0.615 12.30

2 --+ 0.02. = . 2.02 8.2424 0.2424 12.12

,2 + 0.01 =

2 '+ 0.005 =

Exercise 5. Complete the last two rows ofTable 3 to verify that

. Ay/Ax approaches 12 as Ax approaches zero.
0

Exercise 6. Verify the answer of Exercise 5 by drawing a line tan-

gent to the curve in Figure 2.5 at x = 2, aid measuring its slope.

4
Exercise 7. Adapt the method used above to find the slope of

y = x
2
at x= 1.

Exercise 8 (Calculator Exercise). Use the methods of this unit to

find the slope of y = x
2

at x = 0, 0.5, 1, 1.5, 2, 2.5, and 3 sec.

Graph the slope versus x. What kind of curve do you get?

A-39
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a

Some Further Comments

It may have seemed that we found both instantaneous

speed and the slope at a point in a rather roundabout way.

In each case we calculated an'average rate of change (Ah/At

or Ay/Ax) over an interval (At or Ax) which got closer and

and closer to iero. But why be so sneaky? Why not just

set At or 1x equal to, zero instead of letting it approach

zero?

204
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. . . .

To ansNerl this question, consider-the kind of % _

.., . -..
4 measurements we make in order to' get the numbers displayed

s.-

in.Table 1. Put -in its simplest terms, we determine the
....t.

distance, eh, which at object falls.,in astiFe At. We then

calculate eh /et. Putting At = 0 directly would
/
mean that .

" we would have to determine the, distance the object falls

: in a time "interval" of-zero lentil) But in.zero time .

the object moves zero distance so.that corresprdingto

At = 0 we would have eh = 0, and the ratio eh /et = 0/0.

The additional row for Table l'which would correspond to
-

thiscalculation isshown in Table 4: 4

TABLE ,4

An Additional Row for Table 1

Corresponding to At = 0

t
1
(sec) + t(sec) = t

2
(sec)

.

h
2
(ft) eh(ft) Ah/At(ft/sec)

-

1:5 +
.

0 = 1.50

- 4

,

36

-

°-

0

°

0

The e are twbthings ,wr ong withrthe "result", 0/0.,

First, i same result we would get for the'object

whatever its true speedolight be. Whether it is moving so

fast that all we see is a blur as it passes, or so slowly

that it is at the proverbial "snail's pace," our "answer"

will be 0/0. Obviously a quantity which does not distin-

guish between something moving rapidly and something .

o

moving slowly can hardly be, used as the definition of

instantaneous velocity.

The second difficulty witl 0/0 is a math6latical one.

0/0 is, mathematically speaking, a meaningless symbol; ir
is impossible to ascribe a unique numerical value to it.

All th4 helps to explain why we must "sneak up" on

the instantaneous velocit? by deteimining the value eh /et

approaches as` At ,approaches zero.. We can summarize our
I.

1'
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lat

discussion of insta taneous velocity by say&pg that

Ah
v as At 4 O.

heie v is theyinstdntaneous velocity at some specific

time, At is an interval which begins at that time, and eh

is the distance the object moves during that interval.

ANSWERS-10 'BXERdf9ES

t
1

+ At = t
2

h
2

eh eh /At

1.5 + 0.40 '= 1.90 57.76 21.76 '94.4.

2. The two results should agree except for small errors in finding
k

slopes by the tangent line method.

3. At t = 2 sec,

v = 64 ft/sec.

4: The graph is a

straight line.
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5.
x

1

Ax
..-

=
.

x2
Y2

Ay . Ay/Ax

,

ik.

2( + 0.01 = 2.01: 8.120601 0.120601. :12.06.01

+ 0.005 = 2.005 8.0601501' 0.0601501. 12,03002,,2
.

,

6. Thetwo results should agree except for small errors in finding

slopes by the tangent line. method.

7
xi + Ax = x2 , y2 Ay =y 2-1 'hy/Ax

1 + T = 1:1 1.21 0.21 2.1

1 + 02b1 =' 1.01 1.0201 0.0201 2.01

1 + 0.001 =0 1.001 1.002001' 0.002001 2.001

8. The graph is a straight lines
t

ops MIIMMUMMOMEMOMMEMIMMOMMEMEM
MEMO! MIIMMEMMINEW.AM s. MMIIMMOMINCOMFAmammonismomr-mou
MOMKUMEMUUMNERMOMES

IMEMMMOMMMOMMEMMOMMEMOMOUAMMEMM
OMMOMMEMONMEMOMMEMEMMUCEMEMES
MNOMMOSOMMUIMEMMINIMMWAMMEMMEMM
MOMMOMSOMMOMMEMMOMMENUMMOMMEMMEOMOMMMOMMMEMIWWIME
OMMEMOROMMOMMUMMONOUAOMEMMEMMEM
WOMMEMOMMOMIMMONUMMIIMMEMEMMEXMUEMUMEMEMMOUMEMOMMEM
NIMMOMESMEMEMIVAMSEMMEMMEMMEMO
IIMMOMMEMMUMMOMIUMMEMMIIMOMMOMMOM
IIMMEMMEMENOMMEMAMOMMEMMEMMEMMMIN
ONEMMOMMEMEMMUMMEAMEMOMMEMMEMEMOMMOMMEMOM UMMOMEMOMIMOMMO
OMESOMMINSUMEMMOOMMEMMEMEM

IIIIMMEMMOMIUMMENOMMEMMEMMEM
SOMMEMEMIMMIIMMOMMEMMOMMUMMEMEMOMMMOUOMOMIMOEOMMEMOSAMMMEMMMONIMEMMOOMMMOUMMIOMMMEMMPEMMM
unnorummonnommonnommionnonnMW.AEMEMMOOMEAMOME
VIRMUMUSAMOMMIMMUMMEMMUMMAMMUMMO
MIPUMMIUMEMORMOMOMSUMMMOMMOMMEMSUMEMMEOMEMEMIMOEAMME
MIMMXIMMIIMENMEMNIIMOMmONVAM
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.APPENDIX

"..

Differentiation Formulas from Calculus

If u and v are differentiable functions of x, then'

the sum and product functions, + v and u v, are

r 'differentiable functions of x, and their derivatives are

given by the formulas

d du dv
-ar-c.(u + v) = +

and

d dv
i1T(Mr)

_du
-

dx uTF

(Sum Rule)

, (Product

Further, if,v(x) # 0, then the quotient function u/v is

differentiable at 4, and its derivative js:given by the

formula
.

d ful v(du/dx) ufdv/dx)
rc Iv)

Finally, if y is a differentiable fUnction of u, andu

v2
(Quotient Rule)

is a differentiable function of x, then y is a differen-

tiable function of x and

d du

Ct

208
4

(Chain Rule)



APPENDIX 4
044.

The formulas for the derivatives of the trigonometric

functions' of x are listed below.

cdkzSall X = cos X. ax cot x = -csc 2 X.

-d
IT cos x = -sin x. ai sec x = sec x tan x.

ui tan x = sec2 x. a csc x = -csc x cot x.

The formulas for the derivatives with.respect to

x for trigonometric functions of'u where u is a

4 differentiable function of x are listed below.

u7 sin U = cos u du
dx

du
cot u = -csc

2
u

dx'

A

ui cos u = -sin u sec u = sec u tan u
du

du .04 du
17

e*
tan u = sec2 a csc u = -csc u cot u

aT
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V. ANSWERS TO MODEL EXAMS

Answers' to Model Exam'from-Unit 158

1. . Calculus is not needed. The answer is

,h = 1200 tan 0.3 = 37,1.2 meters.

2. , Calculus is needed., The first and second

deriVatilws-Of vo age function'wiil be found

and the second derivative test will be used.

The maximum voltage isv = 1, when t = T.

3. Calculus is riot needed. The formula for the

area of a sector will give approximately 51 in .2
.

4. calculus i needed.- The area of the triangle,

A = 18 sin0cos 0, is obtained by right triangle

trigonometry. Then, as in problem 2, the second.

derivative test will be used. The answer is

4
6

5. A problem similar to any of the .four problems

given in the unit or in Problems 2 and 4 of this

exam would be an acceptable answer.

210
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ANS-1

Answers to Model Exam from Unit 159

d
1. a. 17 (sin x) = cos x

b. (cos x) = -sin x
, x

2. radian.

3. Yes. The result warttot hold if degree measure
is used"..

4. a. -0.7

b. -o.b

5.
Ax , Ay = sin(0.4+ Ax) - sin0.4 Ay/Ax

.1 .0900 .900,

.01 .D0919 .919

.001- .000921 = .921

.0001 .000921 , : .921
.

-.1 ' -.0939 -939'
0.01 -,00923 :923
- . oa -.00092k . ,: .921,'

-.0001 -.0000921 ...921fr

el

The value of the derivative y = sin x at x =0.4'

4 approximately 0.921.

211

.9

k .

ANS-2



Answers, to Model Exam from Unit 160

. 1 .

V

sin h
is sandwiched between two other expressions,

each of which has a limit'of 1 ash Of.

cos h
2. lim 0.

h+0

17n
3. cos (go)

-Answers to Model Examfroft Unit 161

d (Gin x cos X cOs x sin x ( %sin x)ai(tan x)
dicos.

'cgs' x

I = ccs2 x + sin''k 1

ts2 2
sec 2 X.

-COS x

2 a(csc'x) = d 1 sin x -1 cos ,x

sin2 x
dx(T177,7)

39n-
4. -sin (1-8-0-).,

'. .;.
-cos x .1

k sin2 x s131 2(
Sr 2x cos (x2 - 3).

0 ,

. ,,,
.

1

6. 2 cos x - 3 sin 3x.
IP

°

7. 42 sin x cos x.

8. -sin2x + COS 2 X

9. -(6x 1) sin (3x2 = x)

10: cos3x - 2sin2x cos x

11. -cos x h c.

1
12. 3- sin 3x + c.'

13. Sx + 2cos x + c.

14.
dF -KW (K cos 6 - sin 6)

(K sin 6 + cos'6)2

212 ANS-3

44#' .E1X
dx x tan-x.

cos x
sin x

CSC x cot x.

5.
4i 3 sec (°3x t ,5). 4'

4,-,

.,

e \
6.

iilc
2 cos 2x + 2x sV2 x2.

\
:47'. .,

nt.A.

7. f- = x sect x + tan x,

, 8
_Ed -sin x (3 + tan 2x) - 2 cos x tan 2x

x.,' ,

(1 ,+ tart 2x )2 _..4),
F -

r 0 ,

O

,813
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STUDENT FORM 1

Request for Help

\\N

Return to:
EDC/UMAP
55 Chapel St.

Newton, MA 02160

Student: Ifiyov have trouble with- a specific pare of this unit, Please fill
out this formand take it to your, instructor for assistance. 'The information
you give will help the author to revise the unit.

Your Name
Unit No.

OR OR

Page . (

Section Model Exam /
'Problem No.

()

()Middle

Lower

Paragraph Text

Problem No.

Description of Difficulty: (Please be specific)

Instructor: Please indicate your resolution of the difficulty in this box.

Corrected errors in materials. List corrections here:

0

Gave student better explanation; example,'or pro-Cedure than in upi ,

Give brief outline of your addition here:

A,

0 Assisted studefil in acquiring gener51 learning and problem- solving
skills (not. using examples from this unit.)

IA

%%

, A..

Instructor's Signature

Ple'ase use reverse if necessary.



O

p
Name

6

Return to:
STUDENT FORM 2 EDC/UMAP

55 Chapel St.Unit Questionnaire
Newton, MA 02160

Unit NO. Date '

Institution
Course No.

Check the choice for each questio thatkOmes closest to your peidonal opinion:.
..;

1. How usefulwas the amount of detail in the unit?
e

. Not enough detail to undeistan4the unit
Unit' would have been clearer with more detailt

P
.

-Appropyiate amount of detail
un# was occasionally too detaild, but this was not digtracting
Too much detail; I was often, distracted.

/

2. How helpful were the olilem answers? %

Sample solutions were too brief; I could not do the intermediAte steps
Sufficient information was given to solve the problems
Sample solutions were too detailed; I didn't nee4'them

, .
.

3-.. Except for fulfilling_ the prerequisites, how much did you use other sources (for
:\ example, instructor, friends, or other books) in order to understand the unit?

A Lot Somewhat - A Little Not at all ,

44.

1

4. How long was this unit in comparison to the amount of time you generally spend on
a, lesson (lecture and homework assignment) in a typical math br science course?

Much Somewhat About . Somewhat Much '-Longer Longer the Same . Shorter Shorter 41k

5.
Were any of the folloking parts of the uAit confusing or distracting? (Check
as many as apply.)

'-'.1' *:..

Prerequisites .4

Statement of skills and coneepts.(objectives)
Paragraph headings -

Examples =,

.- ..

Special Assistance Supplement (if present'' -

Other
1
please'explain \

a

.

.

13
6. Were any of the following parts of the unit particularly helpful? (Check as many

as apply.)
. \. .

Prerequisites

Statement of skills and concepts (objectives)
Examples
Problems .

-1.

Paragraph headings
Table of Contents

Special Assistance Supplement (if present
Other, please explain' _ r-

7

.

Please describe anything in the unit that you did not particularly like.

4
decribe anything that you found particularly helpful. <Please use the back ofrN

this sheet if you need more space.)
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DETERMINING CONSTANTS OF INTEGRATION
0

Ross L..Finney
-Department of Mathematics

Massachusetts Institute of, Technology
Cambridge,.MA 02139,°

1. INTRODUCTION

As you know, there are times when we have information

about the derivative of a function and wish to conclude

front it informatiod.about tie function itself.

01

O

DERIVATIVE

Velocity

FUNCTION

Distance

Acceleration Velotsit!,,

...Marginal cost Cost

Rate of growth Size of the
of a population population

The reason tflat we can often-succeed in determining func-

tions from their dhivatives is that whenever two functions

have the same derivative on an interval,the functions dif-
fet only by a constant on the interval. Thus, if we can '

find even one function that has the given deriVative, we

know that the function we seek cannot differ from it by more
than a constant. The basic fact is this:

IF f' (x) = g'(x),for ALL VALUES OF x

.IN SOME INTERVAL, THEN FOR SOME CONSTANT C

f(X) - g(x) = C or f(x) = g(x) C

FOR ALL VALUES OF x IN THE INTERVAL
.

"1p
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Tor every value of x,

the two fUnctions

f(x). x2 + I and

g(x) = x2 - 2

have'the derivative Y =

f'(x) = gs(x).= 2x.

Notice that
I

f(x) = g(x) + 3

for,all x. The

value of C in the

rule stated above

is C = 3.
y = x -

To get the graph

of f, we may slide the

graph of y = x2 up 1

unit. To get the

graph of g,. we slide it down 2 units.

slope at any x.

2y = x +

a

r

/ slope 2x

/slope 2x

2

The three graphs

slope 2x

have the same

.Functions whose derivatives are equal only at isolated

points, however, do not have to differ by a constant.

EXAMPLE 1. The difference of the functions f(x) = 2x2 and

'g(x) = x2 is 2x -
x2 = x2, and

not a constant. However, the

derivatives of these two functions have the same value at x = 0, as

. you can see in the following table.

THE

FUNCTIONS

f4x) = 2x2

g(x) = x2

THEIR THEIR DERIVATIVES
DERIVATIVES AT x = 0

f'(x) =,4x
A
0

g'(x) = 2x 0

Exercises

1. Find two values of x at which the derivatives of f(x) = 2i2 and

g(x) = 3x2 are equal.

220
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2, Suppose that f(x) and g(x) are two furictions that have deriva-

tives on some interval, and that

. f(x) - g(x) = C

on the interval.

a) Differentiate both sides of the preceding equation

to show that differentiable functions that differ by

a constant on an interval have the Arne derivativesr'
on th4 Interval.

b) -Show that

2x3 - 3x2

is not constant on any interval.

3. Find two more functions whose difference is not a constant

but whose derivatives agree at one or more points.

In Exercises 4 and 5, use the coordinate axes provided to graph

the given functions,

4. Graph the lines y = x, y = x - 2,

y = x+ 1, and y = x + 3,

(

4
4jltit
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5. Graph the cubic curves

y x3, y = x3 -0.6,

.and y x3 + 0.4.

0

e..

=IP

ea&

2. INDEFINITE INTEGRALS ,

x

1

Since the derivative of Sx2 is 10x, any function f(x)

that hasthe derivative

1"(x) = 10x.

must have the form/

f(x),J 5x2 + C

for some constant C. Without'M0re information we ca
op

learn the Value of C, but at least we have deterMined f up

to a constant, as we say. We call the family of functions

Sx2 + C the indefinite integral of 10x, and we show this byi

writing

flOx dx,= 5x2 +.C.

u

The constant C in this formula is called the constant of

integration.

Manyindefinite integrals may be found by reversing

derivative formulas we already know. Here are some examples.

I
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2.

DERIVATIVE
FORMULA

dx(kx) . k

7d11,7(xr) . rxr -1

oCOMPANION

INTEGRAL FORMULA -,

l'.. 4.Lk dx - kx + C
.

t2'. )rxr- 1 dx * xr + C

If we change all the r'S in formulas (2),and (2,1 to

r + 1, and thdn divide both sides of the formulas so

obtained by (r + 1), we get formulas (3), and (3') shown

below., Formula (3') tends to be more useful than form-.

ula (2').

i

. +r 1
3. d ix r+ 1

. xr 3'. fxr dx . - + Cx

dx r + 1) . r + 1 ,

Formulas (3) and (3') don't work when r.= -1, but the

next formula takes care of this case.

4.
-(pz (1n Ix') = 1

x
4'. ildx . In Ix) + C '

x

5. _ci_

(ex)

.: ex

dx '
5'.

lex
dx r ex + C

'41,0,ice how nice'a function ex is!

EXAMPLE 2.

EXERCISES

Complete the equations in Exercises 6 - 21.
A I

6. f4 dx = 7. I-25. dx =

8. j dx = I7x + C 9. J dx . -3x + C

10. fx2dx . 11. fx'dx =
.

f-5 dii . -5x + C

Pix3 d

fx 3 dx

a

1

. 223'
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o

12. fc- = In lx1 + 13. fl dx =
?

14. f dx = + C
xe

15. 151.dx=

16. f-103x dx = 17.
f

dx = --- + C
x
17

17

102

18. f dx = e
x
+ C 19. f ,dx 4 ..

-----\
. x, 4. 6

$ A.

20. 1 dx = . t C 21.
1

dx = -103.5x + C
x4

In Exercises 22-25, the letters a, b, k and m are constants.

Complete each formula.
r

22. fk dx = 23. fa dx =

24. f dx = mx + C 25,
f.

dx = -bx + C

NO
So far we have used x as t6e only variable of integration, but
other letters are commonly used. Complete the equations in

.

Exercises 26 -33.

26. 132 dt = 27 f dt = at + C

28. IP2 dP = 29.
1

dB = B3 + C
$

30. f5s4 ds = "4.'31. jv dv =

32, feY dy = 1 33
f

dR = In 1111 + C

In rxercis 34-39, the letters with subscripts are constants.

Complete each formula.
--.

34. Ito dt = 35.
f

dt = 32t of + C

36. fao dt = -37. fvo dt =.
..

38. 1 dy = yoy + C 39.
f

dt = sot + C

6

ti

224
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In Exercises 40-43, use the coordinate axes provided to graph

the.three curves selected from each family.

40. Graph y = -2x + C

for C = 0, 3, and -4. Ay

0IS I-I I 1 1 1 I I i ).

1

x2
41. 'Graph y = + C for

C =.0, -1, and' .

A

0.

A y

t.;90,-, )1(

0 2

maim

225
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V

42. ,,Graph y = ex + C for

C = -2.718, - 1, and 0.

43. Graph y = In Ix! + C, x 0 0

for C 0, -1, and 1.

y

.1

1

h

Ay

.0

.40
.6

o

3. INTEGRALS OF LINEAR COMBINATIONS OF FUNCTIONS

Tie rules about differentiating sums of functions

an( multiples4 functions lead to the following two
integration formulas:'

226
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(6) SUM RULE 1 [f (x) + g(x)1 dx + fg(x) dx

(7) SCALAR MULTIPLE RULE fk f(x) dx = k ff(x) dx

(k any constant).

The fact that the integral of the negative of a function

is the negative of its integral is an immediate conse-

. quence of (7). We just take k = -1 to get

f4f(x) dx = f-1 f(x) dx = -1 ff(x) dx = ,-ff(x) dx.

EXAMPLE 3.

("*. dx -fx2 dx - + c
v3

3

The sum and scalar' multiple rules are often used

toget er, as in the next example.

EA LE 4.

J (y4 - 9)4 f y4 dy dy + f9dy Al RULE

I2" in IYI s+ 9y + C SCALAR MULTIPLE RULE
5

In general, the sum and scalar multiple rules allow

us to break problems into parts we know hoW to solve (we

hope).

When we integrate a sum or difference of functions;

one constant of integration is enough to generate the whole

family of possible solutions.

EXAMPLE 5. '

6

(3t2 + 12et)dt = I3t2dt + 12 et dt

= 3+12et + C.

We 4p not need to write the answer as t3 + C1 + 12e
t

+ 12C2.
.

The formulas t3'.4- 12et + C and t3 + C
1
+ 12et + 12C

2
may

generate different functions for different values of the C's

but the family of functions generated by either formula is

2?7,



the same as .the family generated by the other. We are

therefore free to use the simpler formula, whiCh.is what

we do.

EXERCISES .....

Complete the equations in Exercises 44 - 55.

2

44. f(x + 1)dx . x + 45. f
2

(4- x)a)e 7

46.
1

adx
,2

-
2

x + C 47.
f

dx . -in Ix' + C
.

48. f -exdx = 49. f-t2dt =
t3

T 4
foy2 5y)dy .+ b)dy50. f (mx 51.

52. J ds = s2 s3 + C 53.
1 xf(k x - 3 e )dx =

54.
f (1- I +

4e4)dz = 55.
f

dx . x3 - x2 + 7x + C

tr,

FRACTIONAL EXPGNENTS AND NEGATIVE EXPONENTS
- '

In this section we return to formula (3') of

Section 2, which we now call the power formiaa.

(8) POWER FORMULA Ixrdx
xr+1

r+1
, r # -1

Wg do tfiis to point out that the exponent r in the

formula does no.t.have to be positive. It also does

not have to be an integer.

EXAMPLE 6.

fx*dx
T

3

3

2
xI + C

EXAMPLE 7.

C USE THE POWER FORMULA
WITH r f.

SIMPLIFY

1

dx = x-"dx WRITE THE INTEGRAND WITH Af
x NEGATIVE EXPONENT. USE THE

POWER FORMULA WITH r = -4.

228
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-
x-3

+ C INTEGRATE

-3

C POSITIVE OENOMINATOR

1

3x3
+ C POSITIVE EXPONENT

EXAMPLE

f- 15 dx -15 f 1 d
. x2 x2

dx

r = -2 IN THE POWER

/

TO SIMPLIFY THE INTEGRANO.
USE THE SCALAR MULTIPLE RULE

-2 WRITE THE INTEGRANO IN EXPONENTIAL
= -15 fK dx

FORM. TAKE

Nt FORMULA.

a x1
-I

= -15. + C INTEGRATE
.

- 15x
-1

+ CA

- C
x

SIMPLIFY

POSITIVE EXPONENT

EXERCISES/

Complete the equations in Exercises 56-80. 9
56. f tldt -

,57. J . dx . 2x4 + C
...

58. fiTdx ,. 59. f5./Tc dx .

60. j-12.1 ds 1 61. ' - wA, dy =

62: J. ay 63. J. dx -
.

64. f_dx = 1 +C
65. 1

I

+ Cdx = --
x2 X

--a, 1 dt
5

. -t-3- + C 67. f
-4'

ds . -r + C

68. f4y dy - 69.A fcv-14 .

70. PE dx = 71. f.;-4 dx' =

72. J dx- x+ In Ix' + C 73. J dv v 071 + C
v

74. f (x2 + ;17) dx - 75. f (x + 1) dx .

-17

0

11'



76. J sizez + 1-n 1;1 + C 77. f(ex - -,jcr)dx xi. -7

78.
fa

az a 49.
X02

dx .

80. f):',/7 dy

e

5. DIFFERENTIAW TO CHECK
4

To check an indefinite integration there 'ar
steps to follow:

1. Mike sure a constant of integration
is there.

2. Differentiate, to see if you get back

the function you integrated.

EXAMPLE 9.

The equation

f(2x2 - 5x4)dx
3

x3
xs + C

is correct because

(1) C is there, and

(2) CI /2
X xsx3 2

3
x2 4+ C) 3 x 5x .4\076-c 1-

2x2 - 5x".

.

EXERCISES
.....--

True, or false? Differentiate to find out.
%

31. x2dxf ill+ C 3 C82. fx2dx t x +

83. Jt+dt I tl. + C 84. f/i. dy yl. + C

6110k
Is

85. f (es' --17) ds es - 1 + C 86. fill- dx .. - 1 + C
x x

Find the missing integrands in Exercises 87-98.

87
f

dx 0 + C 88. f
,

dt 16.t2 + C

4 . .

dy - 1 + C89.
1, Y

90. J ...-'' dt 16t2 + v0t + so

230
t
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0 *
s.

0

91. 1 dy .. In II + C 92,
J

dt ,. 32t + v0

° '
, (v0 is a constdnt.)?'

, /

93. J dx = mx + b 94. J dx = xl - x
.
+ C

(m and b are constants.)
.

95 J dT =
600

To 96. 1 dx = 23 ex + C

Cro IS a constant)

dx -120x2 - 79x+ C 98. J dy =
2

v + C

6. NUMERICAL CONDITIONS atletT =ERMINE A CONSTANT

OF INTEGRATION

Every fuhction T whose derivative is given by t4/tk

formula ,

f'(x) = 10x

is a membefof the family of. functioss

flOx dis= 5x2 + Cti

But to determine just which one.f is, we need more in-
formation. The information can ,be supplied in various
ways. For instance, we might know the value off at a,Ahows

particular value of x, as in the following example.

EXAMPLE 10, Find f if f'(x) = 10x and f(1) " 3.

SOLUTION

1. f(x)" 5x2 + C for some C. BECAUSE

f'(x) 10x.

2. 5(1)2 + C - 3 .16

BECAUSE
+ C 3

f(1) 6"3,
C -2

pqk
dnditions like f(1) = 3 that select a particular solu-

tion from a family given by an indefinite integral are
called initial conditions.

231
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EXERCISES

Copy and complete the table below. The first row, already com-

plete, shows lhe following information:

The derivative
of a function

3. An initial 5. The function deter-
cpndition mined by the deri-

il1x2 +C1 1f(-5 = 291

2. The indefinite
integral of

this derivative

.

vative together with
the initial condi-
tion.

1f(x) = x2 + 41

4. The value of C de-
termined by the given
initial condition

99.

100.

101.

102.

103.

'104.

.105.

DERIVATIVE

INDEFINITE

INTEGRAL

INITIAL

CONDITION

VALUE

OF C

PARTICULAR

SOLUTION

f' (x) ff' (x)dx f(x0) C f(x)

2x x2 + C f(-5) =29 4 f(x) x2 + 4

In 1x1 + C f(e) = -3

x
f(1) = 2

-x f(l) = 0

f(1) = 10

32 f(0) = 0

vo f(0)' 5

32x + vo f(0) = 0

106. Find the *potential energy U(x) of an object as a function of

its position x, when the magnitude F(x) of the force acting

on the object is given by

F(x) = -kx.

Assume that U(0) = 0 and that U(x) = 1F(x) dA.

it

14

.



r.

7. GRAPHICAL CONDITIONS THAT DETERMINE A CONSTANT

° OF INTEGRATION

The graphs of the functions

f(x) = 1(4 - 3x2)dx ='4x - x3

make a family pf non-

overlapping curves in

the plane. There is

one curve for each

value of C.

Choosing a

function from the

family amounts to

choosing one of

these curves.

One way to pick

out a curve is to

name a point on it.

We might say, for

example, "Take the

curve that passes

through the point

(0,3)." This says

that, of all the

curves y = f(x); we.

want the ong that

satisfies the ini-

tial condition

f(0) =

Figure 2. The graphs

of yq= 4x - x3 + c,

for C -3, 0, 2, 4.

4

Graph of

re4x2-x3-3

(0,-3)

Point

x

15'

' 233



EXAMPLE 11. Find f if

1. f' (x) . 4-- 3x2.

2. The graph of f passes through (1,5).

SOLUTION

'1. The values of f are givenby. theformula

f(x) = 3x2)dx . 4x 7 x3 + C-

The graph of f has the equation

y = 4x - x3 + C.

' 3. Becaus6 (1,5) lies on the graph,

4(1) - (1)3 + C = 5

3 + C = 5

- C = 2.

4. Thus, f(x) = 4x - x3 + 2.

EXERCI,SES

In Exercises 107-112, find the value of C that makes the curve

y = 4x - k3 + C pass through the given point.

107. (0,0) 108. (2,0)

110. (0,4) ,111. (2,7)

Copy and complete the table on page 17.

109. (-2,0)

112. (3,1)

oc,
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,

113.

114.

115

116.

117:

118,

119.

120.

FORMULA
FOR f'(x)

A POINT ON

ffqx)dx THE GRAPH fORMULA
OF f FOR f(x)

2x x2 + c ( 5 , 2 0 ). 2 5

5. (-2,1) 4

8x (OA

-4x + 3
s(-1,1)

9.8x (1,3)

e
x

- 2

6
,

x (1,4)

3

-ccr (2,0)

VW
(3,0)

lq Exercises 121-124, graph the,function Abse derivatii.m is given

and that satisfies the given Initial conditioh.

ds
121. -- = 32t + 10

dt

s (0) = -4.

dv
`122, dL = 9.8

v(0) = 0

123. d = 5et

Y(0) = 7

.,

4.

ds
124. -- = 9.8t

. dt
--.
,

s(0) - 0
4

235
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8. MODELING: INITIAL'CONDITIONS FROM

PLAUSIBLE ASSUMPTIONS

When initial conditions are not stated explicitly,
,

.they can sometimes be inferred from other,,information or

based oh plausible assumptions.

EXAMPLE 12. To sample the upper atmosphere a rocket is fired

straight up from the ground. The rocket engine accelerates

the rocket at 4m/sec2, and has enough fuel to'burn for 2

minutes.

I) How high is the rocket 1 minute after launch?

2) How fast is it climbing then?

3) How high will the rocket lie when the engine stops?

4) How fast will it be climbing then?

ANALYSIS

A
The questions on the list are not as formidable as they might

seem at first glance because we can answer them ail 'by finding for-

mulas that describe.te rocket's height and speed as fuhctions of

time.

To begin, let s(t) denote the rocket's height in meters as a

function tf time measured in seconds. The choice of meters and seconds

is a natural one to make, because the rocket's acceleration is given in

those terms. The use of the letter s is traditional.

Then s'(t) gives the rocket's velocity and s'a(t) its accelera-

tion, so that while the engine is on

s" (t) = 4 m/sec2.

If. we measure time with t = 0 at the:time of ignition, and, assume that

the engine gives full thrust fral the very start, then;

and

s"(t) . 4 0 S t S 120

s' (t) fs"(t)dt

flidt

4t + C, 0 5 t 5 120,,

236
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4

meters per second being understood. Since C = s'(0)vis the initial

velocity of the rocket, we usually write vo in place of C, as in the.

next equation:

s' (t) = 4t + vo, 0 5 t 5 120.

If we assume that the rocket is fired from rest, then

. 0 and s'(t) = 4t when,0,5 t 5 12d.

4 To fipd sit) for the two-minute interval the engine is on we

integrate again. This gives 2

.s(t) = fs1(t) dt

= I4t dt

= 2t2 so meters, 0 t 5 120.

Notice that s is s(0), the so-called initial distance. To assign a

value to it We ass °that distance is measured up from the launching

pad with s(0) = 0. Accoringfy,

`s(t) = 0 5 t 5 120,

and the rocket's motion is completely described for the first two

minutes of flight.

We will tee up what.happens to the rocket4fterburn-

out when we ge o the next exercises. For the moment, let

us look again at the decisions and assumptions we have made,.

and how they enabred us to calculate the rocket's height as

'a fut7E11.4i1)D.E- time.

We first decided on a notation s(t) for the rocket's

height as a function of time. In terms of this notation we

wrote s'(t) for the velocity and s" (t) for the acceleration.

Then'we made assumptions about how the rocket worked and

how it was launched, and decisions about how time and dis-

tance were to be measured. These translated into numerical

23



data about s(t) and its derivatives, and lead to,a descrip-
tion of the motion_during_th "burn" period.

CONCLUSIONSASSUMPTIONS GENERATED ABOUT THE MOTIONDECISIONS DATA - DURING THE BURN PERIOD

Time is
measured in
seconds and
s(t) in meters.
The engine is
on for
0 S_t <120.
The engine
gives full'

thrust while
on.

s"(t) = 4

I

s!(t) = 4t + vo

0 < t <_120 0 S_ t S. 120

The rocket
is fired
from rest.

vo = 0
s'(t) =4t + 0 = 4t
s(t) = 2y2 + so
0 <t <

Distance is
.measured up
from'the
launching
pad.

so = 0
s(t) = 2t2/ 0 = 2t2

0 <'t.< 120

WW05ES

'tic.nowiuse theequations for s(t)" and s'(t),to answer. the
questiops with which we began this section. The table that

follows shows how the flifst two qqestions can be rephrased in

*terms of s(t) and s'(t , and then answered with simple calcula-

Do'the same for the remaining questions." 3

14
. 4

o

go.

238
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QUESTION
REPHRASED IN
TERMS OF THE ANSWERED

MODEL

How high is the rockA
1 minute after launch? s(60) = ?

s(60) = 2(60)2m

= 7200 m
= 7.2 km

How fast is it climb-
ing one minute after
launch?
a) in m/sec
b) in km/h

s'(60) = ?
s'(60) = A(60) m/sec

= 240 m/sec
= 864 km/h

125. How high will late

. rocket be when the

engine stops?
a) in meters
b) in kilometers

126. How fast will it
1, be climbing when

the engine stops?

7/
127. When will the

rocket be 20 k
above the launch
site?

/for what t is
s(t) = 20,000 m?

128. How king does it
take the rocket
to reach a velocity
of 100m/sec?

129. How long did It
take the rocket
to rise the
first 50 m?
Gana goo)J
runner run.50 m
that,fast?

130. H4 long did It
take the rocket

to travel the
next 50 m?

4`.

4

21
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As you gain.experienee, you will not write as

luch as we did when we discussed the rocket problem.

You might not need to write more than

s"(t) = 4 m/sec 2

St(t) = 4t + vo = 4t m/sec

Remember to

later reference.

s = 2t2 + so = 2t2 m

write do theuri-46-1--though, if only fort

It was'convenEent:4to have had, the initiatraocity

vo and the initial distance so both equal,to zero. This

allowed us to describe the velocity and distance traveled

by the rocket during the burn period simply, by the

equations s'(t) = 4i and s(t) = 2t2. It will not 'always

be possible to' makeivo and so both zero 'in desci-ibing a

motion, however, no4 will making them eero always be

desirable. Exercis6 131 below -'is a case in point.

EXERCISES

There is more td be learned about the flight of the rocket.'

The rocket coasts upriards for a while after the engirlie shuts off.

\\for how long? And Irw

To answer these q

is different fromiche o

is that when the/engine

changes. The accelerat

upwards provided by the

provided by Xhe.earth's
/

If we continue to

clock tostart with t =

becomes'

soiiikat

high?

uestions we need a mathematical model that

ne we have been using. The reason for this

shuts down the force acting pn the rocket

in of the racket is no longer 4 m/sec2 .

englene, bu/Yrath'er 9.8 nI /sec2

.gravitational attraction.

measure distamde..ats bifore, but reset our

,

y

'downwards,:

0 agarn, 1t.4e equatjon'fbr t

s "(t) = -9.8 m/sec2

s'(t) = 9.8t + vo m/sec

s (t) -4.9t2 + v t + so m

O

240,

4 Q
he acceleration

.

0 t

0 < t
0 < t

22
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131. a) What numerical values should v.0 and so have?

',I)) Rewrite the equations just givenlor s'(t) and s(t) using

the initial,values from Part a.

Now complete the following table.

,N)

QUESTION
REPHRASED IN'
TERMS OF THE
/ MODEL

ANSWERED

132. How long does the
rocket coast upwards
after burnout?

133. How high does the
rocket go?

134 When do the equations
of motion predict the
rocket will crash?

135 What is the rocket's
predicted speed
just before it
crashes?

136. Would you expect a real
rocket to behave as
predieed in Exercises
134 and 135? Explain.

9. REPEATED INTEGRATION

As you saw in the preceding section, when we

integrate more than oncT to solve a problem we need a

corresponding number of initial conditions to determine

'.the constants of integration., Here Are two more exam-

ples.

EXAMPLE13. F ind f(x) if f"(x) = 12x - 14; 001. 5 and fc0) = -3.

SOLUTION The initial conditions can be used one at a time as

.241
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I

a.

the integration proceeds, or'at the end of the inte-

gration.

METHOD #1

1. Integrate f"(x) x - 14

to get f'(x) 6x2 - 14x + C1.

, 2. lite the condition f'(0) = 5 to find C1.

6(0) - 14(0) + C1 . 5

C1 =5

3. Integrate f'(x) a 6x2 - 14x + 5

to get f(x) 2x3 - 7x2 + 5x + C2.

4. Use the condition f(0) . -3 to find C2. 4.49.

2(0)3 - 7(0)2 5(0) C2 = -3

C2 = -3.

5. Write the completed formula for f(x).

1(x) . 2x3 - 7x2 + 5x - 3.

METHOD #2

' 1. Integrate twice. f"(x) = 12x - 14

f'(x) = 6x2 - 14x + C

f(x) = 2x3 - 7x2'+ C1x + C2.

2e Substitute x 0

in the last two 41C
1
= f'(0) = 5

e'quations'to find C2 m f(0) R

C
1
and C

2.

3. Write the formgla

for f(x):)
f(X) A 2)0 - 7x2 5x r 3

°

EXAMPLE 14. Find f(x) if f"(x) . 4x- 2 and if the graph of f

passes through the point (1,0) with slope 3.

SOLUTION 1. Integrate f"(x)

twice.
f"(x) . 4x - 2

4P f'(x) = 2x2 - 2x + C,

tt

242

2
f(x)

3
x

3
x
2
+ C1x + C2.

24



2. Determine C1 from the

fact that the slope of
f' (1) = 3

the graph is 3 when 2(1)2 - 2(1) + C1 = 3

x= 1. C1 =3

3 Substitute this*value

of C1 in the expres- f(x) = x3 - x2 + 3x + C
2'

slop for f(x).

4. DetermineC2 from the

fact tt.t.,..fil)2LO.

. Write\f(x).

f(1) = 0

10)3 (1)2 + 3(1) + C2 . 0
3

* g + C2 m,

C 2 .

f(x) = I x3 - x2 + 3X
3.3.

0
8

EXERPSES

Find thejunction determined by each set of conditions.

137.

138.

139.

140.

f"(x) = 2-6x; f'(0)

e(t) = 30t; g1(1)

h"(x) = ex; h'(0)

k"(y) = 6; k'(9)

= 4, f(0) = le

= 0, g(1) = 10.

= h(0) r I.

= 10, k(0) = 8.

"1(0 = 6; p"(0) = -8, p'(0) = 0, p(0) = 5.

1 L
f "(t) . 1 6t, and the graph of f passes through the

point (2,0) with slope 0,

143, rr(x)-= and the graph of r passes through the point

(4,4) With slope 3,
ti

144. g"(x) = ex, and the graph of g passes through the origin

with slope 2.

145. .h"(x) - X2, x,> 0, and the graph of h passes through

/ (1,2) with slope 0.

io
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10. ANSWER TO EXERCISES

Section 1

1, x = 0,1

2. 17,(2x3--t, a2) = 6x2 - 6x

is not a constant on any Interval.

3.' Some examples are: 5x 4
and 4x s ; )sin x and; cos x.

4.

5.

26



,

,o.

.,12.

10. 24-3 + c

14. 40x7

16. -003 + C

18. ex

6. 4x + C

8. 17

t

. v

.

3

V

t

°

.

Section 2

)-

.

15. T-2 + C

11.

1.3. 1 n 1).:1 + C

17.

19. lix3

9. -3

7. .25x + C

I

v + C

x4

x6

x16

.

*.

i
S 4

i /

^203 -103.5

22. i kx + C 23. a; + C

24., m -b
.(

$

26. 32t + C '27. a.

n3
28. + C .. --'''t 29'.° 3B2..

3
( gt

30. s6 + C . 31: Tv2 + e

, 4

4
6 32. eY + C- 1

33. IT .

..,

34. tot + C . 35. 324
, .

c

36. apt + C 37. vot + C

38. Yo'
so

f.





Section 3

x245. 4x -
2

+ C

147. - x-
48. -ex + C

C

x4
0 50. m T + bx + C

52. 2s - 3i2

51. y 3 5 2 +C

_ x2 153. -8--
x

+ C.

IR

4

511.

56.

58.

60.

62.

64.

66.

3 lnIzI - + 4ez + C

Section 11

55. 3x2 -.2x + 7

1 1

57. 'x or hT

59.- lb x .+ C-

a 4 2.61. ,-3 y2 + C

165. -7-)

'867.

-

,

2

3
- t 2 + C

2-3 x + C

-8s}.+ C

t1
- + C

2-r

.t4

70. Inixr + c

72. 1 +
X

3

3 X

76. Z 1e +

*78. 200 lnizi + C

80. y + C

69

71.

75.

77.,
' /

79.

4'4

- - + c

-2 -

-1'

le2
ts+ Ink) + C

1e-x
x+ - + c

-
o

3 01 .-r- + C .

3-
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o,

Section 5
-

Nve.

81. True

83. True

45. False

87 5)(4

, 93.

95. -T

97. -240x.-' 70

82. False

84. Falie

86. True

88. 32t

90, 32t +

92. 32

94.
1

1

26T

96. 23 ex

1

98. cry--

INDEFINITE INITIAL VALUE PARTICULAR,

DERIVATIVE INTEGRAL CONDITION OF C SOLUTION

f' (x) ff'(x)dx f(xo ) C f(x)

2x x2 + C f (-0 = 29, 4 f(x)= x2 + 4

tr

lnlx1 + C f(e) =. -3 -4 f(x) Inixl- 4

1

log, inlx1 + c f(1)0= 2 2 f(x) = lnlx1 + 4

4

101:' --X
2

2

i
2

2

)-(-+ C f(1) = 0 f(x) = - +
.

424

103.

x2.4: 6
,3

+ 6x + C
3

f(l) = 10
11--
3

,3
f(x) =

3

32 32x + C f(0) = 0 0 f(x) = 32x

248
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4

<104. vo

105; .32x + vo

vox + C f(0) 0 0 f(x) = vox + 5

16x2 + vo x + C f(0) = 0 0 f(x) = 16x2 +'vox.

106. U(x) =

Section 7

107. 0

HO. 14

108. 0 109. o

HI. 7 112. 16

113.

114.

115.'

116.

117.

118.

119.

120.

FORMULA
FOR f'(x)

ff1(x)dx

A7PC1NT OH-----
THE GRAPH

OF F
FORMULA
FOR f(x)

2x k X 2 + C (5,20) X
2 5

5 5x + C (-2, 1) 5x + 11

Bx 4x2 + C (0, VT) 4x2 + VT

-4x + 3 -2x2 + 3x + C (-1, 1) -2x2 ± 3x + 6

"9.8x 4.9x2 + C (1, 3) .4 4.9;(2".' 1.9

ex 2 e
x

- 2x + C "(O, 7) e
x
- 2x + 6

6
x

4k
6 11nlx1 + C (1, 4) 6 1nlx1 + 4

7cT
3 -3 + C

X
(2, 0) 3 3

x

2Tx+Cw (3. 0) X7
3
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QUESTION
REPHRASED IN
TERMS OF THE

MODEL
ANSWERED

How high is the
rocket 1 Minute
after launch?

s(60) = 7
s(60) = 2(60)2m

= 7200 m
= 7.2'km

. How fast is it
climbing one min-
ute akeriolaunch?
a) in meters it
b) in kilometers

,s'(60) = 1 s'(60) = 4(60) m/sec
a) = 240 m/sec
b) = 864 km/h

125. How high will the
rocket be when
the engine stops?
a) in meters
b) in kilometers

s(120) = 's'(120) = 2-(120)2m.

a) = 28,800 m
b) = 28.8 km

126. How fast will it be
climbing when the
engine stops? (The
speed of sound in
air at sea level is

about 335 m/sec.
Speeds of about 500
m/sec are typical
for oxygen molecules
at room temperature.

s'(120) .,s'(120) = 4(120) m/sec
a) = 480 m/sec
b) = 1728 km/h

12,7. When will the rocket
'be 20'-km above the

launch site?

For what t is-

s(t) = 2R4,200 m?

42, 7,29,000
t2 = 10,900
es'r 100 sec

128. How long does Yi

take the rocket to For what t is
reach a velocity s'(t) = 100 misec?
of 100 m/sec?

it

4t = 100

t = 25 sec

.129. How long did it take
the rocket to rise
the first 50 m? Can
a good runner run
50 m that fast?

4.

For what t is

s(t) = 50 m?

Vt

25j

2t2 = 50 1

t2 =25
t = 5 sec

The current world rec-
brd for 100_m is 9.9
seconds.
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REPHRASED IN

4
QUESTION TERMS OF THE

0

4 MODEL
ANSWERED

130. How long,did it

.40ke the rocket
to travel the
next 50 m?

Find fte t for which a) 2t2 = 100
s(t) = 100 m. Then r t2 = 50
subtract 5 sec. t = 5/-2-sec

b) 5/7 5'= 50.-1)
= 5(0.414)
= 2.07 sec

.

1)1. a) ve= 480 m/sec, and so = 28,800 m (Se xer'cises 126 and 125).

t

6) s'(t) = -9.8t +48O m/sec

' s(t) =/-4.9t2 +:480t + 28,800 m

QUESTION
REPHRASED IN
TERMS OF nif,_

MODEL
ANSWERED

132. How long does the
rocket coast upwards
after burnout?

For what t is

s'(t) = 0?
0 = -9.8t + 480

- t = 480/9.8 sec
= 49 sec

133.° How highfetloes the

rocket gol?

' 4

s(49) ='? s(49) = 40,555 m

134. When do the equations For what t is
. of mprion predict the = 0?

rocket will crash?
4

1.=.140 sec
041After burnout.

# '

' 135. What is the Loc'ket's

predicted speed' just
° before it crashes?

.

V(140) e -892 m/sec, or
892 m/sec downwards
(=3,211,.2 km/K)

.1.4.' 0
136. No. The predictions are sure to be underestimates: they neglect

the air resistance that will slow the rocket's fall; assume the
rocket does not fragment,'and so fo'rth.

252

34_



. .

I

c

r

35

...

e

ft

4.


